首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Creep, the deformation over time of a material under stress, is one characteristic of wood‐filled polymer composites that has resulted in poor performance in certain applications. This project was undertaken to investigate the advantages of blending a plastic of lower‐creep polystyrene (PS) with high‐density polyethylene (HDPE) at ratios of 100:0, 75:25, 50:50, 25:75, and 0:100. These various PS–HDPE blends were then melt blended with a short fiber‐length wood flour (WF). Extruded bars of each blend were examined to measure modulus of elasticity and ultimate stress. Increasing the ratio of WF increased modulus of elasticity in all composites, except between 30 and 40% WF, whereas the effect of WF on ultimate stress was variable, depending on the composite. Scanning electron microscopic images and thermal analysis indicated that the wood particles interacted with the PS phase, although the interactions were weak. Finally, creep speed was calculated by using a three‐point bending geometry with a load of 50% of the ultimate stress. Creep decreased only slightly with increasing WF content but more significantly with increasing PS content, except at pure PS. The WF/75PS–25HDPE blend showed the least creep. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 418–425, 2001  相似文献   

2.
Uncompatibilized and compatibilized blends of poly(ethylene terephthalate) (PET) and high‐density polyethylene (HDPE) (50:50 PET/HDPE) have been prepared and characterized. A commercial grade of ethylene/methacrylic acid copolymer was used as compatibilizing agent and added to the blends in two different proportions, 1% and 7%. Compounded blends were processed following three different procedures: compression molding, extrusion, and extrusion followed by annealing. In every case, there is evidence that suggests that HDPE constitutes the matrix and PET is the dispersed phase. The PET phase shape was related to the processing procedure of the blends. PET adopted a globular morphology in the compression molded samples but it took the form of microfibers (microfibrillar‐like reinforced composites) in extruded samples, which were flattened during the postextrusion annealing process. According to the results obtained in tensile and fracture tests, extruded blends having 7% of ethylene/methacrylic acid copolymer appeared as the optimum combination of processing method and compatibilizer content. POLYM. ENG. Sci., 45:354–363, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
The influence of the compression‐molding temperature on the range of cocontinuity in polystyrene (PS)/ethylene–vinyl acetate (EVA) copolymer blends was studied. The blends presented a broad range of cocontinuity when compression‐molded at 160°C, and they became narrower when compression‐molded at higher temperatures. A coarsening effect was observed in PS/EVA (60:40 vol %) blends upon compression molding at higher temperature with an increase in the phase size of the cocontinuous structure. Concerning PS/EVA (40:60 vol %) blends, an increase in the mixing and molding temperatures resulted in a change from a cocontinuous morphology to a droplet–matrix morphology. This effect was observed by selective extraction experiments and scanning electron microscopy. The changes in the morphology with the molding conditions affected the storage modulus. An increase in the storage modulus in blends compression‐molded at 160°C was observed as a result of dual‐phase continuity. An EVA copolymer with a higher vinyl acetate content (28 wt %) and a higher melt‐flow index resulted in blends with a broader range of cocontinuity. This effect was more pronounced in blends with lower amounts of PS, that is, when EVA formed the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 386–398, 2003  相似文献   

4.
Blends of an extrusion‐grade polyethylene and two different liquid crystalline polymers of Vectra type were prepared by melt mixing using poly(ethylene‐comethacrylic acid) as compatibilizer. Oxygen and water vapor permeability, transparency and welding strength of compression molded and film blown specimens were studied. The compression molded blends showed gas permeabilities conforming to the Maxwell equation assuming low permeability liquid crystalline polymer spheres in a high permeability polyethylene matrix. One of the liquid crystalline polymers with suitable rheological properties formed a more continuous phase in the film blown blends and a substantial decrease in oxygen and water vapor permeability was observed in these blends. The compression molded blends with 50% liquid crystalline polymer and some of blow molded blends showed very high gas permeabilities. It is believed that voids forming continuous paths through the structure were present in these samples. The blends showed significantly higher opacity than pure polyethylene.  相似文献   

5.
Blends of polyamide and high‐density polyethylene show adequate properties for a large range of applications: they are used for the production of filaments, containers, and molding resins. The effect of the addition of 2 wt % of a compatibilizer, maleic anhydride grafted polyethylene, to the blend was studied and compared to the use of postconsumer polyethylene. The samples were extruded with single‐ and twin‐screw extruders with 25, 50, or 75 wt % f polyethylene, and the test specimens, molded by injection, were characterized by stress–strain tests, thermal properties, and morphologies. Processing the blends with postconsumer polyethylene in both extruders improved the mechanical properties in comparison to the blends processed with high‐density polyethylene and the compatibilizer. The morphologies of these blends showed that there was a decrease in the domain size of the disperse phase with the use of the compatibilizer or postconsumer polyethylene. The results indicate that for this blend, postconsumer polyethylene substituted, with advantages, for the necessity of a compatibilizer and the use of the high‐density polyethylene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

6.
While plastics offer many conveniences to modern consumers, they represent unsustainable practices that hinder economic growth and environmental stability. Therefore, the production of biodegradable plastic from alternative feedstocks is investigated to replace conventional plastics in packaging and short‐term use markets. Duckweed represents a feedstock that elicits high biomass productivity, plus a wastewater remediation potential. To establish duckweed's potential for plastic production this study investigates the stability and thermal characteristics of plasticized and blended duckweed polymers. Duckweed biomass milled to 250 μm was plasticized using glycerol and compression molded into plastic samples. Results indicated a 3 : 1 ratio of duckweed to glycerol produced the best polymer stability. This ratio was then used to develop blends which demonstrated dispersion in biobased or polyethylene (PE) phase, except for 50% Biobased/50% PE where phase continuity was observed. Furthermore, surface morphology indicated limited homogeneity in blends and increased PE was correlated to temperature stability of biobased phase. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci. 2013  相似文献   

7.
This paper describes the structure and electrical performance of PTC/NTC (positive temperature coefficient/negative temperature coefficient) effects and their reproducibility upon healing/cooling cycles. The following three‐component blends were studied: PVDF/UHMWPE/CB, PVDF/XL‐UHMWPE/CB and γ‐irradiated compression molded plaques of these blends. Carbon black (CB) particles are attracted to the UHMWPE (ultra high molecular weight polyethylene) and XL (cross‐linked)UHMWPE particles, which constitute the dispersed phase in the PVDF (polyvinylidene fluoride) matrix, but practically cannot or only very slightly penetrate them because of their extremely high viscosity. A double‐PTC effect was exhibited by all unirradiated samples. Irradiation of compression molded PVDF/UHMWPE/CB plaques does not add to their already outstanding reproducibility, and it results In a wide single‐PTC effect. Irradiation of compression molded PVDF/XL‐UHMV/PE/CB plaque, slabilizes their structure upon heating/cooling cycles and thus makes them reproducible PTC/NTC materials, still exhibiting a double‐PTC effect. The carbon black concentrations studied in this report are extremely low (< 2 phr CB) in comparison to other literature reports.  相似文献   

8.
Wood–plastic lumber is promoted as a low‐maintenance high‐durability product. When exposed to accelerated weathering, however, wood–plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood–plastic composites lead to different surface characteristics, which can influence weathering. In this study, 50% wood–flour‐filled high‐density polyethylene (HDPE) composite samples were injection molded, extruded, or extruded and then planed, to remove the manufacturing surface characteristics. Fourier transform infrared spectroscopy was used to chemically show the difference in surface components. The samples were weathered in a xenon‐arc weathering apparatus for 1000, 2000, and 3000 h and analyzed for color fade and loss of flexural modulus of elasticity and strength. Final color (lightness) after weathering was not dependent on the manufacturing method. However, the manufacturing method was related to mechanical property loss caused by weathering. Composites with more wood component at the surface (i.e., planed samples) experienced a larger percentage of total loss in flexural modulus of elasticity and strength after weathering. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1021–1030, 2004  相似文献   

9.
This paper presents results of a study of melt‐processed immiscible polymer blends of high impact polystyrene (HIPS), liquid crystalline polymer (LCP) and carbon black (CB). Relationships between composition, electrical resistivity and morphology of the blends produced by Brabender mixing followed by compression molding, extrusion through a capillary rheometer, extrusion through a single‐screw extruder and injection molding were investigated. The LCP phase morphology in the blends was found sensitive to the processing conditions. A blend composition of at least 20 wt% LCP and 2 phr CB is necessary to preserve the conductivity of filaments produced over a wide range of shear rates. Enhancement of conductivity of blends containing CB and 30 wt% or more LCP was observed, under processing at 270°C and increasing levels of shear rate. An important role of the skin region in determining the resisitivy of injection molded samples was found. A good agreement between resistivity values of extruded or injection molded blends with resistivity values of filaments produced at similar conditions by a capillary rheometer was shown. Hence, the study of shear rate effect on resistivity of capillary rheometer filaments may serve as a predictor of resistivity behavior in real processing procedures. Polym. Eng. Sci. 44:528–540, 2004. © 2004 Society of Plastics Engineers.  相似文献   

10.
The influence of 3‐(trimethoxysilyl)propyl methacrylate and benzoyl peroxide on gel content, crystallinity, and mechanical performance of unfilled PP‐PE blends, and their composites with wood was investigated. All materials were compounded in a twin screw extruder and then injection molded. Specimens were then exposed to high‐humidity and elevated temperature in a humidity chamber to cross‐link any unhydrolyzed silane. Adding wood to the PE‐PP blends, increased premature cross‐linking but also increased gel contents. However, the gel contents of the composites were still low. The PP component did not appear to cross‐link well and our gels were almost entirely HDPE. Fourier Transfer Infrared (FTIR) spectra provided additional evidence that TMSPM is grafted and cross‐linked in unfilled PE‐PP blends. Unfortunately, the spectra of wood composites proved difficult to interpret because of the complexity and overlap of the FTIR spectra of the wood. The HDPE component annealed when exposed to high‐humidity and elevated temperature, although less so in samples with high‐gel contents, presumably because of the decreased mobility. Annealing influenced mechanical performance, especially increasing moduli. Adding peroxide and silane appeared to improve adhesion between the wood flour and matrix in the composites but had little effect on energy absorbed during high‐speed puncture tests. Published 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Polyethylene (PE) and polypropylene (PP) were reacted with benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) to prepare PE‐TEMPO and PP‐TEMPO macroinitiators, respectively. Molecular weight of PP decreased, whereas that of PE increased during the reaction with the BPO/TEMPO system. Polystyrene (PS) branches were grafted to PE and PP backbone chains as a result of bulk polymerization of styrene with the PE‐TEMPO and PP‐TEMPO macroinitiators. A significant amount of PS homopolymer was produced as a byproduct. Weight of the resulting PE‐g‐PS and PP‐g‐PS increased with the polymerization time up to 20 h and then leveled off. Melting point of PE and PP domains in PE‐g‐PS and PP‐g‐PS, respectively, lowered as the content of PS in the copolymers increased. However, glass transition of the copolymers was almost identical with that of PS homopolymer, indicating that the constituents in the copolymers were all phase‐separated from each other. In scanning electron microscopy of the incompatible PE/PS, PP/PS, and PE/PP/PS compounded with PE‐g‐PS and PP‐g‐PS, any clear indication of enhanced adhesion between the phases was not observed. However, phase domains in the blends were, nevertheless, reduced significantly to raise mechanical properties such as maximum stress and elongation at break by 20–75%. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1103–1111, 2002  相似文献   

12.
The feasibility of inducing beneficial changes to polystyrene/polyethylene (PS/PE) blends via reactive extrusion processes is considered. Experiments have been conducted on 50:50 wt.% PS/PE blends that were treated with different levels of dicumyl peroxide and triallyl isocyanurate coupling agent. Both a low molecular weight and a high molecular weight blend series have been investigated. A “more reactive” polystyrene was synthesized by incorporation of a minor amount of ortho-vinylbenzaldehyde. Blends containing this modified polystyrene were subjected to identical processing' conditions on a counter-rotating twin screw extruder. Examination of the tensile properties of the extrusion products suggested that a judicious level of peroxide and coupling agent additives would be beneficial to the ultimate physical properties. The quantity of styrenic phase becoming chemically grafted to the polyethylene matrix was influenced most strongly by the level of the chosen coupling agent. As determined by scanning electron microscopy, the phase morphologies of the tensile test fracture surfaces were strongly dependent upon the reaction extrusion process; those extruded blends that had been exposed to the additive pre-treatment displayed substantially finer microstructure. The enthalpy of fusion of the polyethylene melting endotherm was likewise influenced by both the presence or absence of the additives as well as the molecular weight nature of the blend series.  相似文献   

13.
Films of LDPE containing 1–10 wt % of various polymeric additives were prepared by different techniques. Three poly(ethylene‐graft‐ethylene oxide)s synthesized by grafting poly(ethylene‐co‐acrylic acid) with poly(ethylene oxide) monomethyl ether (MPEO), and two pure MPEOs having molecular weights 750 and 2000 were used as additives. The additives were mixed with LDPE both by blending in a common solvent and by melt mixing. The blends were then solvent cast from xylene onto glass Petri dishes or compression molded between glass plates. The film surfaces were studied by water contact angle measurements and by X‐ray photoelectron spectroscopy (XPS), and melting points and heats of melting were recorded by differential scanning calorimetry (DSC). The blends had a two‐phase morphology, with enrichment of the graft copolymers at the glass–polymer interface, as shown by contact angle values and XPS spectra. Large differences in the interface accumulation between the different film samples were observed. Films prepared by compression molding of solution‐mixed blends exhibited much lower surface accumulation of graft copolymer at the glass–polymer interface than did the solvent cast or melt‐mixed/compression‐molded samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 316–326, 2000  相似文献   

14.
Creep behaviour of unmodified and functionally modified thermoplastic‐wood fibre composites was studied. For PVC, PE and PP‐based composites creep is strongly dependent on the amount of load, time and temperature. A small rise in the temperature above ambient temperature increased creep significantly for PVC‐woodfiber composites. Instantaneous creep resistance of woodfibre‐filled PP is higher than that of PE‐based composites. PP and PE‐based wood composites were modified with maleic and maleimide compounds. Maleic or maleimide modification of woodfibre improved transient creep behaviour of PP‐woodfibre composite but it did not show practically any effect on instantaneous creep. A mathematical model has been proposed to predict creep behaviour of PVC, PP an PE‐based wood fiber composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 260–268, 2000  相似文献   

15.
Immiscible blends of recycled poly(ethylene terephthalate) (R‐PET), containing some amount of polymeric impurities, and high‐density polyethylene (R‐PE), containing admixture of other polyolefins, in weight compositions of 75 : 25 and 25 : 75 were compatibilized with selected compatibilizers: maleated styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MA) and ethylene–glycidyl methacrylate copolymer (EGMA). The efficiency of compatibilization was investigated as a function of the compatibilizer content. The rheological properties, phase structure, thermal, and viscoelastic behavior for compatibilized and binary blends were studied. The results are discussed in terms of phase morphology and interfacial adhesion among components. It was shown that the addition of the compatibilizer to R‐PET‐rich blends and R‐PE‐rich blends increases the melt viscosity of these systems above the level characteristic for the respective binary blends. The dispersion of the minor phase improved with increasing compatibilizer content, and the largest effects were observed for blends compatibilized with EGMA. Calorimetric studies indicated that the presence of a compatibilizer had a slight affect on the crystallization behavior of the blends. The dynamic mechanical analysis provided evidence that the occurrence of interactions of the compatibilizer with blend components occurs through temperature shift and intensity change of a β‐relaxation process of the PET component. An analysis of the loss spectra behavior suggests that the optimal concentration of the compatibilizers in the considered blends is close to 5 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1423–1436, 2001  相似文献   

16.
Abdulrahman Alfarraj 《Polymer》2004,45(25):8435-8442
Significant improvements in impact strength were achieved in polystyrene blends that combined conventional HIPS particles in combination with particles produced by compositional quenching. A commercial HIPS was solvated and blended with additional polystyrene, rubber and diblock copolymer, and the mixture was flash devolatilized to give the end-product. Impact strengths of injection and compression molded samples and tensile properties are reported. It is known that the best impact modified polystyrene obtained by compositional quenching, here called aHIPS, has smaller and lower modulus rubber particles than conventional HIPS, and has more than twice the impact strength of conventional HIPS. The novel blends of HIPS and aHIPS reported here exhibit synergism, the impact strength of the blend being higher than expected as a linear average of the component properties. The rubber phase volume including occlusion was held at 23%. An interior optimum in rubber efficiency (i.e. Izod impact per unit weight of rubber) was observed when 75% of the phase volume was derived from HIPS while an interior minimum was observed when 25% of the phase volume was derived from HIPS. The elongation at break and tensile impact strength exhibited a form of negative synergism, indicating that conventional HIPS is superior in low speed tests and aHIPS is better in high speed tests such as Izod.  相似文献   

17.
Wood–plastic lumber is promoted as a low‐maintenance high‐durability product. When exposed to accelerated weathering, however, wood–plastic composites may experience a color change and loss in mechanical properties. Differences in weathering cycle and composite surface characteristics can affect the rate and amount of change caused by weathering. In this study, 50% wood flour filled high‐density polyethylene composite samples were injection molded, extruded, or extruded and then planed to remove the manufacturing surface characteristics. Composites were exposed to two accelerated weathering cycles in a xenon arc weathering apparatus. This apparatus exposed the samples to xenon arc radiation, which is a combination of UV, visible, and IR radiation that is similar to solar radiation. Composites were exposed to radiation with or without water spray. After exposure to radiation and water spray, composites with more wood component at the surface (i.e., planed samples) experienced a larger percentage of total loss in flexural modulus of elasticity and strength after weathering compared with the other composites. Composites exposed to radiation only did not experience as much change in properties as those exposed to radiation with water spray. The results of this study demonstrate that exposing wood–plastic composites to water spray in combination with radiation is more severe than exposing wood–plastic composites to radiation only. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3131–3140, 2006  相似文献   

18.
Biodegradable starch‐polyester polymer composites are useful in many applications ranging from numerous packaging end‐uses to tissue engineering. However the amount of starch that can form composites with polyesters without significant property deterioration is typically less than 25% because of thermodynamic immiscibility between the two polymers. We have developed a reactive extrusion process in which high amounts of starch (approx. 40 wt%) can be blended with a biodegradable polyester (polycaprolactone, PCL) resulting in tough nanocomposite blends with elongational properties approaching that of 100% PCL. We hypothesize that starch was oxidized and then crosslinked with PCL in the presence of an oxidizing/crosslinking agent and modified montmorillonite (MMT) organoclay, thus compatibilizing the two polymers. Starch, PCL, plasticizer, MMT organoclay, oxidizing/crosslinking agent and catalysts were extruded in a co‐rotating twin‐screw extruder and injection molded at 120° C. Elongational properties of reactively extruded starch‐PCL nanocomposite blends approached that of 100% PCL at 3 and 6 wt% organoclay. Strength and modulus remained the same as starch‐PCL composites prepared from simple physical mixing without any crosslinking. X‐ray diffraction results showed mainly intercalated flocculated behavior of clay at 1,3,6, and 9wt% organoclay. Scanning electron microscopy (SEM) showed that there was improved starch‐PCL interfacial adhesion in reactively extruded blends with crosslinking than in starch‐PCL composites without crosslinking. Dynamic mechanical analysis showed changes in primary α‐transition temperatures for both the starch and PCL fractions, reflecting crosslinking changes in the nanocomposite blends at different organoclay contents. Also starch‐polytetramethylene adipate‐co‐terephthalate (PAT) blends prepared by the above reactive extrusion process showed the same trend of elongational properties approaching that of 100% PAT. The reactive extrusion concept can be extended to other starch‐PCL like polymer blends with polymers like polyvinyl alcohol on one side and polybutylene succinate, polyhydroxy butyrate‐valerate and polylactic acid on the other to create cheap, novel and compatible biodegradable polymer blends with increased toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1072–1082, 2005  相似文献   

19.
The compatibility of low‐density polyethylene and poly(ethylene‐co‐vinyl acetate) containing 18 wt % vinyl acetate units (EVA‐18) was studied. For this purpose, a series of different blends containing 25, 50, or 75 wt % EVA‐18 were prepared by melt mixing with a single‐screw extruder. For each composition, three different sets of blends were prepared, which corresponded to the three different temperatures used in the metering section and the die of the extruder (140, 160, and 180°C), at a screw rotation speed of 42 rpm. Blends that contained 25 wt % EVA‐18 were also prepared through mixing at 140, 160, or 180°C but at a screw speed of 69 rpm. A study of the blends by differential scanning calorimetry showed that all the prepared blends were heterogeneous, except that containing 75 wt % EVA‐18 and prepared at 180°C. However, because of the high interfacial adhesion, a fine dispersion of the minor component in the polymer matrix was observed for all the studied blends with scanning electron microscopy. The tensile strengths and elongations at break of the blends lay between the corresponding values of the two polymers. The absence of any minimum in the mechanical properties was strong evidence that the two polymers were compatible over the whole range of composition. The thermal shrinkage of the blends at various temperatures depended mainly on the temperature and EVA‐18 content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 841–852, 2003  相似文献   

20.
Blends of high-density polyethylene (HDPE), polystyrene (PS), and an SEBS triblock copolymer were extruded, pelletized, and injection molded. The binary HDPE–PS blends exhibit very poor ductibility; however, addition of the SEBS block copolymer greatly improves this characteristic but with an accompanying loss in strength and modulus. The modified blends are very tough and have mechanical properties suitable for many end use applications. However, weld lines pose a problem and should be avoided with these blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号