首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We demonstrated that density functional theory calculations provide a prediction of the trends in C‐S bond dissociation energies and atomic spin densities for radicals using two model compounds as diethyldithiocarbamate (DC)‐mediated iniferters. On the basis of this information, we synthesized 2‐(N,N‐diethyldithiocarbamyl)isobutylic acid (DTCA) and (4‐cyano‐4‐diethyldithiocarbamyl)pentanoic acid (CDPA) as DC‐mediated iniferters. Free‐radical polymerizations of styrene (St) were carried out in benzene initiated by DTCA or CDPA under UV irradiation. The first‐order time‐conversion plots showed the straight line for the UV irradiation system initiated by CDPA indicating the first order in monomer. The number‐average molecular weight (Mn) of the polystyrene (PSt) increased in direct proportion to monomer conversion. The molecular weight distribution (Mw/Mn) of the PSt was in the range of 1.3–1.7. It was concluded this polymerization system proceeded with a controlled radical mechanism. However, photopolymerization of styrene initiated by DTCA showed nonliving polymerization consistent with UV initiation. Theoretical predictions supported these experimental results. Methacrylic acid (MA) could also be polymerized in a living fashion with such a PSt precursor as a macroinitiator because PSt exhibited a DC group at its terminal end. This system could be applied to the architecture of block copolymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 413–418, 2005  相似文献   

2.
In this work, well‐defined homopolymers of methyl methacrylate (PMMA) and styrene (PSt) were prepared via single‐electron‐transfer living radical polymerization using CCl4 as initiator and Fe(0)/N, N, N′,N′‐tetramethyl‐1,2‐ethanediamine as catalyst. The polymerization was conducted at 25 °C in N,N‐dimethylformamide in the presence of air. It proceeded in a ‘living’ manner, as indicated by the first‐order kinetics behavior, and the linear increase of the number‐average molecular weight (Mn, GPC) with conversion was close to the theoretical Mn, theory. Solvent and additives have a profound effect on the polymerization. In addition, the PMMA and PSt obtained remained of low dispersity. The chain‐end functionality of the obtained homopolymer of PMMA was characterized by proton nuclear magnetic resonance. A block copolymer of P(MMA‐block‐St) was achieved by using the obtained PMMA as macroinitiator. The living characteristics were further demonstrated by chain extension experiments. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

4.
Background: Radical polymerization is used widely to polymerize more than 70% of vinyl monomers in industry, but the control over molecular weight and end group of the resulting polymers is always a challenging task with this method. To prepare polymers with desired molecular weight and end groups, many controlled radical polymerization (CRP) ideas have been proposed over the last decade. Atom transfer radical polymerization (ATRP) is one of the successful CRP techniques. Using ATRP, there is no report on the synthesis of polystyrene‐block‐polyurethane‐block‐polystyrene (PSt‐b‐PU‐b‐PSt) tri‐block copolymers. Hence this paper describes the method of synthesizing these tri‐block copolymers. To accomplish this, first telechelic bromo‐terminated polyurethane was synthesized and used further to synthesize PSt‐b‐PU‐b‐PSt tri‐block copolymers using CuBr as a catalyst and N,N,N,N″,N″‐pentamethyldiethylenetriamine as a complexing agent. Results: The ‘living’ nature of the initiating system was confirmed by linear increase of number‐average molecular weight and conversion with time. A semi‐logarithmic kinetics plot shows that the concentration of propagating radical is steady. The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and differential scanning calorimetry show that the novel PSt‐b‐PU‐b‐PSt tri‐block copolymers were formed through the ATRP mechanism. Conclusion: For the first time, PSt‐b‐PU‐b‐PSt tri‐block copolymers were synthesized through ATRP. The advantage of this method is that the controlled incorporation of polystyrene block in polyurethane can be achieved by simply changing the polymerization time. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
A new strategy for graft copolymerization of thiophene onto a polystyrene (PSt) backbone by a multi‐step process is suggested and the effects of an organoclay on the final properties of the graft copolymer sample are described. For this purpose, first poly(styrene‐co‐4‐chloromethyl styrene) [P(St‐co‐CMSt)] was synthesized via nitroxide‐mediated polymerization. Afterwards, the chlorine groups of P(St‐co‐CMSt) were converted to thiophene groups using the Kumada cross‐coupling reaction and thiophene‐functionalized PSt multicenter macromonomer (ThPStM) was synthesized. The graft copolymerization of thiophene monomers onto PSt was initiated by oxidized thiophene groups in the PSt chains after addition of ferric chloride (FeCl3), an oxidative catalyst for polythiophene synthesis, and FeCl3‐doped polythiophene was chemically grafted onto PSt chains via oxidation polymerization. The graft copolymer obtained was characterized by 1H NMR and Fourier transform infrared spectroscopy, and its electroactivity behavior was verified under cyclic voltammetric conditions. Finally, PSt‐g‐PTh/montmorillonite nanocomposite was prepared by a solution intercalation method. The level of dispersion of organoclay and the microstructure of the resulting nanocomposite were probed by means of XRD and transmission electron microscopy. It was found that the addition of only a small amount of organoclay (5 wt%) was enough to improve the thermal stabilities of the nanocomposite.© 2013 Society of Chemical Industry  相似文献   

6.
Amphiphilic block comb‐shaped copolymers, poly[poly(ethylene oxide) methyl ether acrylate]‐block‐polystyrene [P(A‐MPEO)‐block‐PSt] with PSt as a handle, were successfully synthesized via a macromonomer technique. The reaction of MPEO with acryloyl chloride yielded a macromonomer, A‐MPEO. The macroinitiator PSt capped with the dithiobenzoate group (PSt‐SC(S)Ph) was prepared by reversible addition–fragmentation transfer (RAFT) polymerization of styrene in the presence of benzyl dithiobenzoate, and used as macroinitiator in the controlled radical block copolymerization of A‐MPEO at room temperature under 60Co irradiation. After the unreacted macromonomer A‐MPEO had been removed by washing with hot saturated saline water, block comb‐shaped copolymers were obtained. Their structure was characterized by 1H NMR spectroscopy and gel permeation chromatography. The phase transition and self‐assembling behaviour were investigated by atomic force microscope and differential scanning calorimetry. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
The aim of this study was to prepare transparent polystyrene (PSt) hybrid materials containing silicone macromonomer. Silicone urethane methacrylate (SiUMA) was synthesized by the reaction between the hydroxyl end groups of a silicone macromonomer and the isocyanate group of 2‐methacryloyloxyethyl isocyanate (MOI), and copolymers with different weight proportions were prepared by copolymerization of styrene (St), SiUMA and ethyleneglycol dimethacrylate (EGDMA). Though the prepared P(St‐co‐SiUMA) copolymers which had not introduced EGDMA were opaque, the prepared P(St‐co‐SiUMA‐co‐EGDMA) copolymers were transparent, similarly to pure PSt. DSC and 1H‐NMR measurements were carried out to investigate the factors in this transparency in detail. From these measurement results, it was confirmed that the reactivity of the copolymerization had a significant influence on the transparency of the product. In addition, the contact angle of P(St‐co‐SiUMA‐co‐EGDMA) with 10 wt % SiUMA was greater than 90°, which was a 10° improvement compared to pure PSt. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Fairly uniform copolymer particles of methyl acrylate (MA), butyl acrylate (BA), or butyl methacrylate (BMA) were synthesized via Shirasu porous glass (SPG) membrane and followed by suspension polymerization. After a single‐step SPG emulsification, the emulsion composed mainly of the monomers. Hydrophobic additives of dioctyl phthalate (DOP), polystyrene molecules, and an oil‐soluble initiator, suspended in an aqueous phase containing poly(vinyl alcohol) (PVA) stabilizer and sodium nitrite inhibitor (NaNO2), were subsequently subjected to suspension polymerization. Two‐phase copolymers with a soft phase and a hard phase were obtained. The composite particles of poly(St‐co‐MA)/PSt were prepared by varying the St/PSt ratios or the DOP amount. The addition of PSt induced a high viscosity at the dispersion phase. The molecular weight slightly increased with increasing St/PSt concentration. The multiple‐phase separation of the St‐rich phase and PMA domains, observed by transmission electron microscopy, was caused by composition drift because the MA reactivity ratio is greater than that of St. The addition of DOP revealed the greater compatibility between the hard‐St and soft‐MA moieties than that without DOP. The phase morphologies of poly(St‐co‐MA), poly(St‐co‐BMA), and their composites with PSt were revealed under the influence of DOP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1195–1206, 2006  相似文献   

10.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

11.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

12.
Preparation by anionic living technique and characterization of poly(secondary aminostyrene) having narrow molecular weight distribution were investigated. N‐isopropyl‐N‐trimethylsilyl‐4‐vinylbenzylamine (SBA) was purified by use of sec‐butylmagnesium bromide as a purging reagent under high vacuum. SBA was anionically polymerized with n‐butyllithium or cumylpotassium in tetrahydrofuran at −78°C under high vacuum to yield the corresponding polymer (PSBA) in 100% yield. Subsequent deprotection of the trimethylsilyl group from PSBA produced poly(N‐isopropyl‐4‐vinylbenzylamine) (PBA) of the desired molecular weights (Mn: 1.3 × 104–17 × 104, determined by membrane osmometry) with narrow molecular weight distribution (Mw/Mn: 1.07–1.03, determined by gel permeation chromatography). The living lithium carbanion of PSBA can initiate styrene (St) to yield PSBA‐b‐PSt block copolymer (Mn = 4.0 × 104, Mw/Mn = 1.05), and the polystyryllithium can initiate SBA to yield PSt‐b‐PSBA (Mn = 3.7 × 104, Mw/Mn = 1.25). The deprotection of the trimethylsilyl group from the two block copolymers produced new block copolymers containing poly(secondary aminostyrene) block. Anionic reactivity of SBA and basic properties of PSBA are discussed in terms of the 13C chemical shift of β‐carbon in the vinyl group of SBA and steric effect. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2039–2048, 1999  相似文献   

13.
Polymer‐grafted montmorillonite (MMT) hybrid composites which possess a hard backbone of MMT and a soft shell of brush‐like polystyrene (PSt) were prepared via “grafting from” strategy based on nitroxide‐mediated radical polymerization (NMRP) using 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) as mediator. Three steps were used to graft PSt chains to the surface of MMT: anchoring of methacrylatoethyl trimethyl ammonium chloride (DMC) onto the surface of MMT by ion exchange reaction first. And then, the surface alkoxyamine initiator was produced in a one‐step process by reacting simultaneously TEMPO, BPO, and DMC in the presence of MMT. Next, PSt chains with controlled molecular weights and polydispersities were grown from the alkoxyamine functionalized MMT surface. The prepared PSt‐g‐MMT hybrid particles have been extensively characterized by FTIR, XPS, XRD, TGA, TEM, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Four kinds of polymerizable N‐aromatic maleimides (MIs)—4‐[(4‐maleimido)phenoxy]benzophenone (MPBP), 4,4′‐bis[(4‐maleimido)phenoxy]benzophenone (BMPBP), 4‐maleimidobenzophenone (MBP), and 4,4′‐bismaleimidobenzophenone (BMBP)—were synthesized as free radical photoinitiators, by introducing directly N‐phenylmaleimide groups or maleimide groups into the molecule of benzophenone (BP). Compared with BP, their UV‐visible spectra have a significantly red‐shifted maximum absorption. The maximum absorption of MIs containing bifunctional maleimide groups is slightly larger than the corresponding monofunctional ones. Choosing an unsaturated tertiary amine N,N‐dimethylaminoethyl methacrylate (DMAEMA) as coinitiator, the photopolymerization of 1,6‐hexanediol diacrylate (HDDA), initiated by these four MIs, was studied through photo‐DSC. The results show that all the MIs are dramatically more efficient than BP. Among them, MPBP is the most efficient, in which the polymerization rate is almost three times as high as that of the BP system. Photoinitiators containing bifunctional maleimide groups, though having higher final conversion, are less efficient than the corresponding monofunctional ones. These polymerizable photoredox systems significantly reduced the migration of the active species, leading to their higher efficiency. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
The synthesis of polystyrene‐b‐polydimethylsiloxane‐b‐polystyrene (PSt‐b‐PDMS‐b‐PSt) copolymers is described. Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide resulting in the PDMS macroinitiators. The terminal alkyl bromide groups were then used as initiators for atom transfer radical polymerization (ATRP) to produce block copolymers. Using this technique, triblock copolymers consisting of a PDMS centre block and polystyrene terminal blocks were synthesized. ATRP of St from those macroinitiators showed linear increases in Mn with conversion, demonstrating the effectiveness of ATRP to synthesize a variety of inorganic/organic polymer hybrids. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
A novel polymerizable photoinitiator, 4‐[(4‐maleimido)phenoxy]benzophenone (MPBP) comprising the structure of N‐phenylmaleimide and benzophenone was used for the photopolymerization with N,N‐dimethylaminoethyl methacrylate (DMAEMA) as coinitiator. The ESR spectrum of this photoredox system was studied and compared with BP/DMAEMA; the results showed the same signals of them and verified that N‐phenylmaleimide does not generate radicals. The kinetics for photopolymerization of methyl methacrylate (MMA) using such system was studied by dilatometer. It was found that the polymerization rate was proportional to the 0.3172th power of the MPBP concentration, the 0.7669th power and the 0.1765th power of MMA concentration and DMAEMA concentration respectively; the overall apparent activation energy obtained was 31.88 kJ/mol. The polymerization kinetics of 1,6‐hexanediol diacrylate (HDDA) initiated by such system was studied by photo‐DSC. It showed that the increase in the MPBP concentration, light intensity, and temperature leads to increased polymerization rate and final conversion. The apparent activation energy was 11.25 kJ/mol. This polymerizable photoredox system was significantly favorable for reducing the migration of active species but owning high efficiency. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2347–2354, 2006  相似文献   

18.
Bulk polymerization of styrene (St) with an in‐situ‐activated Ziegler‐catalyst containing neodymium 2‐ethylhexyl phosphonate [Nd(P204)3], magnesium–aluminum alkyls and hexamethyl phosphoramide (HMPA) was studied. The new rare‐earth catalyst exhibited high activity for polymerization of styrene, and its catalytic efficiency reached 14 730 g PSt/g Nd. The influence of reaction parameters, such as Mg/Nd, Mg/Al, St/Nd molar ratios, temperature, etc, on the catalyst performance was examined in detail. The molecular weight of the resulting polystyrene is ultra‐high (MW = 40 × 104 ∼ 120 × 104 g mol−1) and the distribution of molecular weight is broad (MW/Mn = 2.1 ∼ 2.8). The microstructure of the polystyrene was characterized by IR and 13C NMR spectroscopies and found to be atactic. © 2001 Society of Chemical Industry  相似文献   

19.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

20.
Polyacrylamide grafted crosslinked poly (vinyl chloride) beads (PAM‐PVC) were prepared by the surface‐initiated controlled/“living” radical polymerization (SI‐CLRP) methodology from the crosslinked poly(vinyl chloride) beads with surface modification with diethyldithiocarbamyl groups under UV irradiation. The macroiniferter, diethyldithiocarbamyl crosslinked poly(vinyl chloride) beads (DEDTC‐PVC) were prepared by the reaction of the surface C? Cl groups with sodium N,N‐diethyl dithiocarbamate. The “grafting from” polymerization exhibited some “living” polymerization characteristics and the percentage of grafting (PG%) increased linearly with polymerizing time and achieved 47.6% after 6 h UV irradiation. The beaded polymer with polyacrylamide surface was also characterized with Fourier transform infrared (FTIR) and scanning electron microscope (SEM). Its adsorption property for Hg(II) ion was also investigated preliminarily. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3385–3390, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号