首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Simple formulas are proposed for predicting the Munsell value of colors with the same tone (the same values for whiteness‐blackness, perceived lightness, and chroma irrespective of hue). The formulas can be used for any tone. In other words, the method can determine the Munsell value with the same perceived lightness at any specified chroma irrespective of hue. The chromatic strength (CS) function is only used for the derivations. The formulas are very simple, and can be used not only in the colorimetry but also in the color design field. The concept described in this study is that a common CS function can be used for transforming each of the three color attributes (hue, lightness, and chroma) from their uniform color space metric to their corresponding color appearance space attribute. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

2.
Color appearance models, among other things, predict the hue of a stimulus when compared with defined stimuli that represent the four unique hues. Recent studies have indicated that the stimuli representing with high reliability unique hue (UH) percepts vary widely for different color‐normal observers. The average yellow and blue UH stimuli for 102 observers, as determined in a recent experiment at medium chroma, differ considerably from the CIECAM02 defined unique hues, based on the Swedish NCS. Wide inter‐observer variability precludes color appearance models from accurately predicting, for individual observers, all four unique hue stimuli. However, models should predict accurately those of a well‐defined average observer. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 505–506, 2008  相似文献   

3.
A structural comparison has been made of the lightness, chroma, and hue scales of the Munsell system, as expressed in the Munsell Renotations, and of the OSA‐UCS system. While the lightness scales are similar (except for the adjustment for the Helmholtz–Kohlrausch effect and the inclusion of a “crispening” effect in OSA–UCS), there are significant differences in the chroma scales along the major chromatic axes. Unlike in CIELAB, the increments in X and Z along these axes for equal chroma steps in both systems do not fall on a continuous function. In the two systems, as well as in CIELAB lines connecting colors of equal chroma differences at different Y values point to nonreal origins. These differ among the three systems. A major difference between Munsell and OSA–UCS is the size of the first chroma step away from gray. An experiment has been performed with the result that the OSA–UCS system is in much better agreement with the average observer in this respect than the Munsell system. OSA–UCS exhibits considerably more internal uniformity in terms of X and Z increments between steps than the Munsell system. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 186–192, 2000  相似文献   

4.
Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour‐normal observers (n = 185). These data were then used to evaluate the most commonly used colour appearance model, CIECAM02, by transforming the CIEXYZ tristimulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is important. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

5.
Most color preference research focuses on colors in an object color mode. In our daily life, however, colors are perceived not only as an object color mode but also as other modes, such as unnatural object color and light source color modes. To explore the effect of the color appearance mode on color preference, we examined the relationship between color preference and the mode of color appearance. Thirty‐three color chips were chosen from the Munsell notation varying in hues and chromas. The color chips were presented in different color appearance modes by changing the subject's room illuminance and the color chip room illuminance. The experimental results showed that the brightest and most saturated colors were preferred. It was found that the subject preferred color in a light source color mode and unnatural object color mode to color in an object color mode. Moreover, we found that hue had a small effect on color preference in the light source color mode. We also investigated the relationship between color preference and the perceived color attributes (perceived chromaticness, whiteness, and blackness). In a supplementary experiment, elementary color naming was conducted. The results showed that the perceived chromaticness, perceived whiteness, and perceived blackness play a role for the determination of color preference for different color appearance modes. We, consequently, suggest that color preference is dominated not only by color attributes but also by the mode of color appearance. © 2009 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

6.
In this study, SCOTDIC cotton standard colours (a physical exemplification of the Munsell system) were studied extensively. L*, a*, b* values were measured and plotted to check the uniformity of the Munsell (SCOTDIC) hue, value and chroma values in a CIELAB diagram. Although for some borderline hues the hue angles were quite different than expected (around 0° or 360°), the correlation between SCOTDIC hue and CIELAB hue angle was fairly good and the correlation between SCOTDIC value and CIELAB lightness was also quite high. However, the correlation between SCOTDIC chroma and CIELAB chroma was only moderate. In the CIELAB diagram, the constant SCOTDIC hue and constant chroma loci took the shape of approximately linear radial lines starting from the origin and approximately concentric circles with the origin as their centres, respectively. However, some deviations were observed for high chroma colours and yellow hues in the respective cases. The instrumentally predicted Munsell notations were compared with the actual SCOTDIC notations. Some deviations of the SCOTDIC system from the Munsell system were observed.  相似文献   

7.
Hue scale adjustment factors have been determined for CIELAB using the Munsell system. They have been found to vary significantly as a function of hue angle. A formula has been derived based on the 2° observer color‐matching functions that models the chroma scale of the Munsell system much more accurately than CIELAB using the same opponent color relationships. In this formula, hue differences can be calculated from hue angle differences, hue scale adjustment factors, and chroma. The hue scale adjustment factors based on hue angle required for the Munsell system have been derived. The variability by hue angle of these factors is such that an analytical hue scale adjustment function as those in CMC or BFD appears insufficient. The adjustment factors are compared to those recently derived by Qiao and coworkers. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 33–37, 1999  相似文献   

8.
In this article, the effect of the spatial and colorimetric attributes of neighboring color on color appearance shift in bicolor striped woven fabrics is investigated. A total of 240 test/neighboring woven color combinations were constructed in four different striped paradigms. Each test color in the combinations was visually assessed by 12 observer panels with the use of the magnitude estimation method estimating the magnitude of perceptual color attributes lightness, colorfulness, and hue. The visual estimates obtained were analyzed statistically by employing correlation and simple regression methods, and, as a result, the following significant neighboring color effects were detected and individually defined: (1) neighboring color's size, lightness, colorfulness, and hue on test color's lightness, (2) neighboring color's colorfulness and hue on test color's colorfulness, and (3) neighboring color's hue on test color's hue. Furthermore, through multiple regression analysis, color appearance models by which the lightness, colorfulness, and hue of bicolor woven fabrics can be predicted were derived. The predictive performance of the models was evaluated by calculating the difference between the visually estimated and the predicted color appearances, using ΔL*, ΔC*, Δh°, and ΔECMC(2:1). Among all the derived models, the model producing the smallest mean error was chosen as a final model, and its great accuracy in color appearance predictions was verified through further statistical evaluation. It is envisaged that the findings of this research are of benefit to design textile products with bicolor striped woven fabrics to have desired color appearances. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 512–521, 2017  相似文献   

9.
Part I of this article found, inter alia, that chroma resembles log inverted luminance. This article develops three math models of Munsell chroma and associated colorfulness from (1) inverted luminous reflectance Y, (2) inverted chromatic luminance, and (3) inverted chromatic luminance combined (over the mid‐spectrum 480–580 nm) with the unimodal curve for spectral absorptance of M cones. The first two models are simple but of limited accuracy and demonstrate that inverted luminance (of any form) cannot fully account for varying relative chroma around the hue cycle, particularly the minor minimum and maximum about 490 and 520 nm (which also feature in B:L functions). The third model is rather complex but very accurate, apparently the only accurate model of Munsell chroma or other experimentally based scales of relative chromaticness in the literature. It adjusts to any level of luminance or purity, as demonstrated for several levels. Three models of brightness (B:L ratio) for 20 field aperture colors are given, based on either Munsell chroma or log inverted chromatic luminance. The former provides two accurate and simple models of the CIE B:L function: (1) log chroma = B:L ratio ±0.1, and (2) (chroma/k)x = B:L ratio ±0.1. The latter also predicts B:L for nonspectral colors and those of lower purities, e.g., object colors. The results finally solve the relationship between brightness and chroma and demonstrate that B:L ratio (a contrast in constant luminance) arises directly from chroma (also a form of contrast in constant luminance), or the reverse. © 2008 Wiley Periodicals, Inc. Col Res Appl, 34, 55–67, 2009.  相似文献   

10.
Chroma‐step perception and its corresponding color difference in the same hue direction are the different attributes on color perception. The differences between them are different for different hues. Hue‐appearance step and its corresponding color difference along the same hue circle also have completely different concepts. The causes of the above two facts are clarified. The information based on various experiments and theoretical considerations are given for supporting the facts. In addition, it is clarified that the relationship on color‐appearance step and color difference has completely different characteristics between the quantitative (chroma) and the qualitative (hue) attributes of object colors. The importance of chromatic strength (CS) on hue is clarified in each of the three color attributes hue, value, and chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 30, 42–52, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20073  相似文献   

11.
The CIECAM97s type of colour appearance models results in some changes in hue and saturation for series of colours of constant chromaticity but changing luminance factor. To keep hue and saturation constant for such series, a model in which the dynamic cone response is based on a power function has been developed. By optimizing its parameters, its correlates of hue, lightness, colourfulness, brightness, and saturation perform nearly as well as those of CIECAM97s. A similar performance is achieved in a modified power model, which is more physiologically plausible. © 2003 Wiley Periodicals, Inc. Col Res Appl, 28, 82–88, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10128  相似文献   

12.
The purpose of this research is to investigate the color appearance and color connotation of unrelated colors. To investigate color appearance (i.e., brightness, colorfulness, and hue) for unrelated colors, 22 observers have answered their color appearance for 50 unrelated color stimuli using the magnitude estimation method. Perceptual data obtained by the experiment is compared with the color attributes data estimated by unrelated‐color appearance models, CAM97u and CAM02u. It is found that both models perform reasonably well but the performance of CAM02u is better than that of CAM97u. For investigating color connotation for unrelated colors, 32 observers have judged their color connotation for the 50 unrelated color stimuli using the 10 color connotation scales (i.e., “Warm – Cool,” “Heavy – Light,” “Modern – Classical,” “Clean – Dirty,” “Active – Passive,” “Hard – Soft,” Tense – Relaxed,” “Fresh – Stale,” “Masculine – feminine,” and “like – Dislike”), and semantic differential method is used for measurement. It is found that the color connotation models developed for related colors perform poorly for unrelated colors. Experimental results indicate that brightness attribute is confusing to estimate and does not affect color connotation significantly for unrelated colors. Based on the psychophysical data, new models for “Warm‐Cool”, “Heavy‐Light”, “Active‐Passive” and “Hard‐Soft” were proposed using CAM02u hue, brightness, and colorfulness. Color connotations for unrelated colors are classified into three categories, which “Color solidity,” “Color heat,” and “Color purity.” © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 40–49, 2015  相似文献   

13.
A colorimetrically characterized computer-controlled CRT display was used to determine 24 loci of constant perceived hue for pseudo-object related stimuli, sampling the display's interior color gamut at constant lightness and the edge of its gamut at variable lightness. Nine observers performed three replications generating matching data at 132 positions. the constant hue loci were used to evaluate the correlation between perceived hue and hue angle of CIELAB, CIELUV, Hunt, and Nayatani color appearance spaces. the CIELAB, CIELUV, and Hunt spaces exhibited large errors in the region of the blue CRT primary, while the Nayatani and CIELUV spaces produced large errors in the region of the red primary for constant lightness stimuli. Along the edge of the CRT's color gamut (variable lightness stimuli), all the spaces had a similar trend, large errors in the cyan region. the differences in performance between the four spaces were not statistically significant for the constant lightness stimuli. For the variable lightness stimuli, CIELAB and CIELUV had statistically superior performance in comparison with the Nayatani space and equal performance in comparison with the Hunt space. It was concluded that for imaging applications, a new color appearance space needs to be developed that will produce small hue error artifacts when used for gamut mapping along loci of constant hue angle. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A new theoretical color order system is proposed on the basis of various studies on color appearance and color vision. It has three orthogonal opponent‐colors axes and an improved chromatic strength of each hue. The system has color attributes whiteness w, blackness bk, grayness gr, chroma C, and hue H. A method is given for determining Munsell notations of any colors on any equi‐hue planes in the system. A method is also given for determining grayness regions and grayness values on hue‐chroma planes in the system. It is concluded that colors with the same color attributes [w, gr, bk, C] but with different hues in the theoretical space have approximately the same perceived lightness, the same degree of vividness (“azayakasa” in Japanese), and also the same color tone. The tone concept, for example used in the Practical Color Coordinate System (PCCS), is clarified perceptually. The proposed system is a basic and latent color‐order system to PCCS. In addition, the concept of veiling grayness by a pure color with any hue is introduced. Further, relationships are clarified between generalized chroma c(gen) and grayness. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 135–150, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10234  相似文献   

15.
The hue uniformity of the CIELAB system is investigated using a hue circle of Munsell colors at value 6 and chroma 14 and experimentally determined hue coefficient data. CIELAB hue differences for equal Munsell hue increments are found to vary up to nearly a factor 4, and hue coefficients differ from the experimentally determined ones by up to 40% at certain wavelengths. Dominant wavelengths assigned by the CIELAB system to individual Munsell hues are found to vary up to 35 nm from those of the Munsell Renotations. Four other color space systems are compared with widely differing but comparable results. The CIE 2° color-matching functions are adapted to result in a set of opponent-color functions accurately representing the Munsell Hue and Chroma data. A call is made for the experimental determination of the “standard hue observer” as a step toward an improved color space/color-difference formula. © 1998 John Wiley & Sons, Inc. Col Res Appl, 23, 314–322, 1998  相似文献   

16.
The effect of purity on hue has been reported severally (including Munsell and NCS data on constant hue loci) over 100 years but without general agreement. For example, the number of hue shift nulls in the data vary from 2 to 6. Hence, despite this effect's commonality it lacks reliable data for modeling underlying mechanisms or color appearance. The purity of a stimulus may be decreased by adding white (as in Abney's experiment), by adding black, or by adding gray such that luminance, or alternatively lightness, remains constant. This article gives new data for CRT stimuli for illuminant D65 for all four conditions but mainly for equal luminance, for 31 observers and 13 test dominant wavelengths. Further, samples were observed in two temporal conditions: either simultaneously as pairs (the contrast mode) or singly (the no‐contrast mode). Three types of samples were tested: (1) equal luminance 30 cd/m2 for all dominant wavelengths, (2) equal lightness for all dominant wavelengths, and (3) zero‐gray colors, requiring different luminances for different dominant wavelengths. In all the above conditions, the resultant hue shifts graphed a robust bimodal curve (two peaks in cyan and red, two troughs in blue and green) across the hue cycle, similar to Munsell and NCS data except the definite peak in cyan.© 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 25–39, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20286  相似文献   

17.
Chromatic adaptation has been studied by applying methods of direct scaling to color appearances of invariant stimuli seen under different conditions of adaptation. The influence on color appearance of correlated color temperature of illumination, sample luminance factor, illuminance, and surround induction was studied. Perceived hue [expressed as proportions of unitary hues] varies with color temperature of illumination but not significantly with luminance factor or illuminance for the conditions of these experiments. Colorfulness varies with color temperature and also with luminance factor and illuminance, although relative colorfulness does not change significantly with illuminance. Lightness varies with luminance factor but is essentially independent of color temperature and illuminance over the ranges investigated here. Achromatic and chromatic lightnesses for samples of equal luminance differ in systematic ways that depend upon dominant wavelength and excitation purity. Color appearance data for daylight adaptation are highly correlated with Munsell Renotation specifications. The results may be used to determine corresponding colors for the adaptation conditions studied [equivalent to CIE Illuminants D65, D50, A, and dark adaptation]. They may also be used to determine color appearances under those conditions throughout a color solid. It is anticipated that they will be used as the basis for developing mathematical expressions for predictions of corresponding colors under other illumination conditions as well.  相似文献   

18.
In this article, the color appearance of a large (85°) homogeneous self‐luminous visual stimulus was studied in a psychophysical experiment. Large stimuli were displayed on a plasma display panal (PDP) monitor. The large stimuli were viewed with a fixed viewing time (2 s). They were compared with 2° and 10° stimuli presented on a grey background on a CRT monitor. The so‐called “color size effect” was found to be significant. The color stimulus was perceived to be lighter when it was large compared with the 2° and 10° situation. But we did not find the general increase of chroma claimed in previous literature. We found only small hue changes. A model of the color appearance of large‐field stimuli is presented in terms of the CIELAB L*, a*, and b* values of the corresponding 2° and 10° stimuli. © 2007 Wiley Periodicals, Inc. Col Res Appl, 33, 45–54, 2008  相似文献   

19.
Riemannian metric tensors of color difference formulas are derived from the line elements in a color space. The shortest curve between two points in a color space can be calculated from the metric tensors. This shortest curve is called a geodesic. In this article, the authors present computed geodesic curves and corresponding contours of the CIELAB ( ), the CIELUV ( ), the OSA‐UCS (ΔEE) and an infinitesimal approximation of the CIEDE2000 (ΔE00) color difference metrics in the CIELAB color space. At a fixed value of lightness L*, geodesic curves originating from the achromatic point and their corresponding contours of the above four formulas in the CIELAB color space can be described as hue geodesics and chroma contours. The Munsell chromas and hue circles at the Munsell values 3, 5, and 7 are compared with computed hue geodesics and chroma contours of these formulas at three different fixed lightness values. It is found that the Munsell chromas and hue circles do not the match the computed hue geodesics and chroma contours of above mentioned formulas at different Munsell values. The results also show that the distribution of color stimuli predicted by the infinitesimal approximation of CIEDE2000 (ΔE00) and the OSA‐UCS (ΔEE) in the CIELAB color space are in general not better than the conventional CIELAB (ΔE) and CIELUV (ΔE) formulas. © 2012 Wiley Periodicals, Inc. Col Res Appl, 38, 259–266, 2013  相似文献   

20.
In this study, Swedish Natural Color System (NCS) unique hue data were used to evaluate the performance of unique hue predictions by the CIECAM02 colour appearance model. The colour appearance of 108 NCS unique hue stimuli was predicted using CIECAM02, and their distributions were represented in a CIECAM02 acbc chromatic diagram. The best‐fitting line for each of the four unique hues was found using orthogonal distance regression in the acbc chromatic diagram. Comparison of these predicted unique hue lines (based on the NCS data) with the default unique hue loci in CIECAM02 showed that there were significant differences in both unique yellow (UY) and unique blue (UB). The same tendency was found for hue uniformity: hue uniformity is worse for UY and UB stimuli in comparison with unique red (UR) and unique green (UG). A comparison between NCS unique hue stimuli and another set of unique hue stimuli (obtained on a calibrated cathode ray tube) was conducted in CIECAM02 to investigate possible media differences that might affect unique hue predictions. Data for UY and UB are in very good agreement; largest deviations were found for UR. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 256–263, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号