首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homopolymers and copolymers of styrene and different acrylic esters (i.e., acrylates) were synthesized by the free‐radical solution polymerization technique. Feed ratios of the monomers styrene and cyclohexyl acrylate/benzyl acrylate were 90 : 10, 75 : 25, 60 : 40, 50 : 50, 40 : 60 and 20 : 80 (v/v) in the synthesis of copolymers. All 6 homopolymerizations of acrylic ester synthesis were carried out in N,N(dimethyl formamide) except for the synthesis of poly(cyclohexyl acrylate) (PCA), where the medium was 1,4‐dioxane. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as initiators. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and viscosity measurements. The reactivity ratios were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios (r) for the copolymerization of styrene (rS) with cyclohexyl acrylate (rCA) were found to be rS = 0.930 and rCA = 0.771, while for the copolymerization of styrene with benzyl acrylate, the ratios were found to be rS = 0.755 and rBA = 0.104, respectively. The activation energies of decomposition (Ea) and glass‐transition temperature (Tg) for various homo‐ and copolymers were evaluated using TGA and DSC analysis. The activation parameters of the viscous flow, voluminosity (VE) and shape factor (ν) were also computed for all systems using viscosity data. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1513–1524, 2001  相似文献   

2.
Hankun Xie  Yili Liu  Ming Jiang  Tongyin Yu 《Polymer》1986,27(12):1928-1934
The miscibility of a homopolymer in corresponding domains of a copolymer predicted by Meier's theory is far less than found experimentally. In this paper, a density gradient model is suggested for describing the segment distribution of the bound and free chains in block copolymer-homopolymer systems. Using this model, Helfand's theory, which has been successful in explaining microphase separation of block copolymers, is extended to polymer blends of homopolymer and corresponding block copolymer with lamellar structure. The calculated free energy of mixing of the system shows that the predicted miscibility is much larger than that obtained by Meier's theory and is in good agreement with the main known experimental results. In particular, on the basis of the present theory, homopolymer can be expected to be solubilized by corresponding blocks in the whole composition range provided that the molecular weight of the former is less than that of the latter.  相似文献   

3.
Small spherical particles of styrene–divinylbenzene copolymers have been synthesized by modified suspension polymerization. The effects of divinylbenzene (DVB) contents, dilution degree of the monomers and diluent composition on the porous structure and swelling properties of the copolymers were investigated. Toluene uptakes of macroporous copolymers were considered as a result of three contributions: filling of the fixed pores, expansion of the fixed or collapsed pores, and nuclei swelling and heptane uptakes as a result of the two first contributions. The increase of DVB content in the copolymers synthesized in presence of a solvating diluent (toluene) provoked a decrease on the nuclei swelling. The increase of dilution degree with solvating diluents changed the toluene and heptane uptakes, and when the diluent–copolymer affinity was reduced, the fixed pore volume increased. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1257–1262, 1997  相似文献   

4.
Immobilized Cu2+ ions affinity cellophane–poly(glycidyl methacrylate) (PGMA)‐grafted membranes have been prepared through three steps. The first step was introducing of epoxy groups to its chemical structure through grafting process with PGMA. Factors affecting the grafting process have been studied and grafting percentage (GP) up to 233% has been obtained. The second step was converting the introduced epoxy groups to sulfonic ones. It was found that maximum amount of sulfonic groups (2.7 mmol/g) was obtained with minimum GP (46.08%). The third and last step was the immobilization of Cu2+ ions into sulfonated grafted membranes obtained from the previous step. Maximum amount of immobilized Cu2+ ions was found to be 60.9 ppm per gram of polymer. The verification of the grafting and sulfonation steps has been performed through characterization of the obtained membranes using FTIR, TGA, and EDAX analysis. Finally, Cu2+‐immobilized membranes have been evaluated in separation of β‐galactosidase (β‐Gal) enzyme from its mixture with bovine serum albumin (BSA) in different pH medium. Maximum protein adsorption, for both proteins, has been obtained at pH range 4–4.5; as 90 and 45% for β‐Gal and BSA, respectively. The results showed high affinity toward β‐Gal separation although BSA concentration (0.5%) is 20‐folds of β‐Gal (0.025%). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Polysuccinimide (PSI) was first synthesized via thermal polycondensation reaction using maleic anhydride and urea as the starting materials. Then, polyaspartic acid–glutamic acid (PASP–GLU) grafted copolymers were prepared from PSI and GLU. The structure of PASP–GLU was characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The molecular weight was measured by gel permeation chromatography, and the crystallinity was analyzed by X‐ray diffraction spectra. The effects of grafting ratio on the builder performances were systematically studied, as well as on the thermal property and biodegradability. It is demonstrated that as the grafting ratio of GLU increases, the thermal stability and biodegradability decrease a little, but still maintain in high level. Most importantly, the incorporation of GLU into side chains significantly improves the builder performance of PASP–GLU. The maximum values for calcium ion chelating power, dispersion power of CaCO3, and alkali‐buffer ability reach 233.2 mg, 108.9 mg, and 1.70 mL, respectively, at the highest grafting ratio, in which the dispersion power of CaCO3 and alkali‐buffer ability are even better than that of sodium tripolyphosphate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40282.  相似文献   

6.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide), PDMPO, poly(2,6‐diphenyl‐1,4‐phenylene oxide), PDPPO, as well as their copolymers of different compositions, having both random and block structures, have been synthesized and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and gel permeation chromatography. Solution‐cast films were prepared from all synthesized polymers using chloroform as a solvent. The thermal properties of the resulting films were characterized by differential thermal analysis and differential scanning calorimetry, whereas their morphology was investigated using X‐ray diffraction. Ultimately, the potential of the synthesized polymers for gas separation was studied by examining gas permeation properties of the respective thin films in single gas permeation tests involving N2, O2, CH4, and CO2. In general, the O2 and CO2 permeability coefficients decrease with the PDPPO content. However, the largest drop in the permeability coefficients occurs between PDMPO and a copolymer having the lowest PDPPO content, and the permeability coefficients PDPPO are comparable or even lower than the permeability coefficients of the copolymers having the largest PDDPO content. On the basis of combination of the permeability coefficients and their ratios for CO2/CH4 and O2/N2, random copolymers appear to be a better candidate for gas separation membranes than their block counterparts. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The free radical copolymerization of vinylpyrrolidone (VP) with 2‐hydroxy‐3‐methacryloyloxypropyl β‐cyclodextrin (βW7 MAHP), a derivative of hydroxypropyl β‐cyclodextrin (CD) substituted by polymerizable methacryloyl groups, is carried out in water by varying the molar ratio of the comonomers. It is found that the higher the molar ratio of βW7 MAHP to VP, the larger the molar mass of the water‐soluble copolymer. A size exclusion chromatography analysis coupled with multiangle laser light scattering detection (SEC–MALLS) suggests that VP‐rich copolymers with a mass‐average molar mass (MM) of about 2.5 × 104 g mol?1 may consist of βW7 MAHP dimers, trimers, and oligomers containing few CD units whereas βW7 MAHP rich copolymers with an MM of about 5.5 × 106 g mol?1 are likely to be dominated by crosslinked polymer materials. βW7 MAHP‐co‐VP copolymers coated on porous silica are used as high‐performance liquid chromatography chiral selectors. The effects of the structural features of the guest molecule and the characteristics of the chiral stationary phases on the retention and resolution are evaluated. SEC–MALLS detection shows that, by varying the comonomer feed, copolymers with different molar masses and macromolecular structures are formed. The chiral separation ability of Copo VP is evaluated toward enantiomers having one or more aromatic rings as a function of the amount of copolymer adsorbed onto the silica surface, the βW7 MAHP content, and the concentration of solute. It is clear that the column combining the greater amounts of adsorbed copolymer and βW7 MAHP exhibits better resolving power. Moreover, the size, geometry, and functionality of the guest molecule are important factors that strongly affect the enantioselectivity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2364–2374, 2005  相似文献   

8.
Poly(ethylene terephthalate) (PET) and bisphenol-A polycarbonate (PC) are melt-mixed in equimolar ratios under various conditions to get a series of PET–PC copolymers. Samples from each copolymer are characterized by differential scanning calorimetry, 1H and 13C nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and polarizing light microscopy. The lengths of the PET sequences are determined in different copolymer samples by NMR sequential analysis before and after removal of the PC segments by selective degradation. In the former case, rather unusual results are obtained, suggesting predominant alternating order of single PET and PC repeating units. After selective elimination of the PC units, however, the NMR techniques show evidence of consecutively bonded dyads or triads of PET and PC units, which corresponds to the theoretical values in random copolymers obeying the statistics of Bernoulli. Considering the 1H-NMR and SEC results after selective elimination of the PC sequences, a possible structure of the residual PET containing segments is proposed for the first time. It is concluded that in the PET/PC copolymers studied, when sequence distribution approaches the random one, determination of the PET block lengths after elimination of the PC sequences is more reliable as compared to the cases when selective degradation is not applied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 429–440, 1998  相似文献   

9.
Blends of linear polyethylene (PE) and isotactic polypropylene (iPP) with different average molar masses and a series of ethylene‐propylene (EP) copolymers with different chemical composition as well as blends of PE, Ipp, and EP copolymers were separated using a carbon‐column packing (Hypercarb®) and gradients of 1‐decanol or 2‐ethyl‐1‐hexanol → 1,2,4‐trichlorobenzene (TCB). The separation is based on full adsorption of linear PE on the carbon sorbent at temperature 160°C. However, iPP is not adsorbed and elutes in size exclusion mode. The random EP copolymers have been adsorbed in the column packing and separated according to their average chemical composition after application of the gradient starting with alcohol and ending with pure TCB. The elution volumes of the copolymers depended linearly on the average concentration of ethylene in the copolymers. The HPLC elution profiles were correlated with the CRYSTAF elution profiles. In contrast to CRYSTAF, fully amorphous polyolefin samples were separated with the high‐temperature adsorption liquid chromatography. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Poly(butyl acrylate‐g‐styrene) graft copolymers were prepared by free‐radical polymerization using a polystyrene macromonomer carrying a methacryloyloxy group at the chain end and they were characterized by size‐exclusion chromatography, and Fourier transform infrared spectroscopy. Glass transition temperatures and degradation behavior were determined by thermal analysis. Only a single glass transition temperature was observed for the resulting graft copolymers, indicating the miscibility between the poly(styrene) phase and poly(butyl acrylate) (pBA) phase in the graft copolymer. The incorporation of polystyrene segments in the graft copolymer improved the thermal stability of pBA and enhanced the apparent activation energy for the thermal degradation of pBA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 783–789, 2001  相似文献   

11.
Segmented block copolymers were synthesized from hydroxyl‐terminated liquid natural rubber and polyurethane oligomers based on Bisphenol A and toluene diisocyanate by one‐shot and two‐shot processes in solution. Structural features were characterized by infrared and nuclear magnetic resonance spectroscopic analysis. The spectra of the one‐shot materials were identical with those of the two‐shot materials, indicating their chemical identity. The soft segment Tg was well defined and almost invariant around −64°C, but the hard segment Tg varied from 75 to 105°C as the hard segment content increased from 30 to 60 wt %. Two relaxation temperatures were observed for each sample in dynamic mechanical analysis (DMA). These observations and the two‐stage thermal decomposition by random nucleation mechanism, as investigated in thermogravimetric analysis unambiguously confirmed complete phase segregation in these materials. The scanning electron microscopy and optical micrographs showed well‐defined domains dispersed in a matrix, indicating the two‐phase morphology. Systematic changes in hardness and tensile properties with hard segment content were also observed. The samples behaved like soft elastomers at lower hard segment content, toughened plastics at high hard segment content, and rigid elastomers at intermediate compositions. Variations in hardness and tear strength were consistent with this behavior. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 706–721, 1999  相似文献   

12.
Advance polyamide‐6‐b‐polydimethylsiloxane (PA6‐b‐PDMS) multiblock copolymers were first synthesized via the polymerization in bulk. Binary carboxyl terminated PA6 was served as the hard segment and PDMS modified with hexamethylene diisocyanate (PDMS‐NCO) was the soft segment. A series of PA6‐b‐PDMS copolymers based on different content and length of soft segments were obtained. Interestingly, Differential scanning calorimetry (DSC) studies revealed no obvious change in melting temperature after introducing PDMS segments to copolymers. The high melting temperatures indicated these copolymers possess potential applications in automotive industry that require high continuous use temperatures. DSC and transmission electron microscopy studies both demonstrated increasing the length and the content of the soft segment contributed to increasing of the degree of microphase separation. However, the improvement of thermal stability resulting from PDMS segments was also observed by thermo gravimetric analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41114.  相似文献   

13.
Diethylenetriamine and a copolymer of sodium acrylate and maleic anhydride were used for the adsorption and separation of Au3+, Ru3+, Bi3+, and Hg2+ ions by forming polymer‐metal ions triple complex. The acidity, temperature, capacity, and interference on the adsorption of these ions on the complex, as well as the conditions of desorption of these ions from the complex, were investigated by means of inductively coupled plasma optical emission spectrometry. The results were satisfactory. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 819–821, 1999  相似文献   

14.
Any quantitative information on the strength of interactions between an inorganic filler and polymer is substantial for the future application of the composite. The magnitude of adhesion of two phases may be deduced from results collected by various experimental techniques. A Flory–Huggins interaction parameter (χ23) was earlier successfully used in the characterization of polymer blends. We propose to express the magnitude of modified filler/polymer interactions by using χ23. It was calculated from retention data of test solutes during an inverse gas chromatography (IGC) experiment. IGC is an extension of conventional gas chromatography in which a nonvolatile material to be investigated is immobilized on a column. Parameters determined during IGC experiments may be successfully used in the characterization of polymers and their blends, composites, fillers, and other materials and the quantification of the interactions between the components of polymer mixtures, including the interactions between polymeric components and filler surfaces. Here this method is applied to the characterization of a series of poly(ether urethane)/modified carbonate–silicate filler systems containing different amounts of a filler (5, 10, and 20 wt %). The possibilities and limitations of the IGC method are shown. The usefulness of some methods for minimizing the Δχ effect (the dependence of χ23 on the type of test solute) is examined and discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The covalent grafting of biological molecules to copolymers of maleic anhydride and methyl vinyl ether (MAMVE) has been used in various applications in diagnostics. To tentatively elucidate the phenomena involved in the control of the immobilization of oligodeoxynucleotides and proteins, the physico‐chemical properties of MAMVE copolymers were investigated. Because the grafting mixture contains water, to allow dissolution of the biomolecules without loss of biological properties, the anhydride‐based copolymer evolves from a neutral to a negatively charged macromolecule due to hydrolysis of the anhydride moities. The properties of both hydrolyzed and nonhydrolyzed polymers were investigated. As demonstrated by light‐scattering measurements in batch, the copolymers showed some level of aggregation in DMF, DMSO, and aqueous DMSO. The presence of aggregates was confirmed by size‐exclusion chromatography in DMF. However, partial deaggregation occurred for the lowest molecular weight sample, on adding 1% w/v of LiBr. The nonhydrolyzed copolymers exhibited a rigid conformation in a 5% water/DMSO mixture, as well as their hydrolyzed counterpart at a low ionization degree. The rate of the hydrolysis reaction was shown to be dependent on the pH of the reaction medium and on temperature. The activation energy of the hydrolysis reaction was 14 kJ/mol, and the rate constant in the order of 10−4 s−1. On the basis of these data, the effect on the grafting reaction of biomolecules of different parameters such as ionic strength and the nature of the solvent, along with some other results were interpreted in terms of interactions between the synthetic and bioactive macromolecules. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 927–936, 1999  相似文献   

16.
17.
Ming Jiang  Xianyi Cao  Tongyin Yu 《Polymer》1986,27(12):1923-1927
To study the effect of the molecular architecture of a copolymer on its miscibility with corresponding homopolymers a series of block copolymers of styrene and isoprene with diblock, triblock and four-arm star architectures have been prepared and the morphologies of the blends of the copolymers and polyisoprene with different molecular weights have been examined by electron microscopy. The results show that miscibility varies in the sequence diblock>triblock>four-arm star copolymers. This sequence is in the opposite direction to the variation of the architectural complexity of the block copolymers, i.e. the more complex is molecular architecture, the greater is conformation restriction in microdomain formation and the less is solubility of homopolymer in corresponding domains.  相似文献   

18.
The curing process of an epoxy–urethane copolymer in a heated mold was studied. The epoxy resin (DGEBA, Araldyt GY9527; Ciba Geigy), was coreacted with a urethane prepolymer (PU, Desmocap 12; Bayer) through an amine that acted as crosslinking agent (mixture of cycloaliphatic amines; Distraltec). The study focused on the effect of the curing condition and PU concentration on time–temperature profiles measured in the mold and the consequent final morphologies obtained. As the PU concentration increases, the maximum temperature reached in the mold decreases as a result of the dilution effect of the elastomer on reaction heat, whereas the Tg of the piece also decreases. Phase separation is a function of conversion and temperature reached in the curing part and was analyzed using experimental data and a mathematical model that predicts temperature and conversion throughout the thickness of the mold. Scanning electron microscopy and atomic force microscopy were used to determine the characteristics of the dispersed phase for the different formulations and conditions of curing. It was shown that the size of the dispersed phase increased with the initial PU concentration, whereas there were practically no differences in the separated phase as a function of position or temperature of curing (in the range of 70 to 100°C studied). The superposition of the phase diagrams with the conversion–temperature trajectories during cure provided an explanation of the morphologies generated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 889–900, 2001  相似文献   

19.
BACKGROUND: Frequently, the unimodal shape of size‐exclusion chromatography (SEC) elution curves is taken as evidence that the polymer sample being analysed contains no minority components in significant quantities. The legitimacy of this assumption, however, has never been checked systematically. RESULTS: An algorithm for the simulation of SEC elution curves of multi‐component polymer systems has been developed. Using the algorithm, the shapes of the overall SEC curves with a wide range of parameters describing binary systems were generated and scanned. The crucial parameters determining the shape of the elution curves are the ratio of the molecular weights of the components, the breadth of the molecular weight distribution of the components, the mass fractions of the components and the band broadening. CONCLUSION: A detailed inspection of the curves shows that the identification of the presence of minority components in such systems from the shapes of the elution curves is more difficult then generally assumed. The absence of peak irregularities, such as minima or inflection points, widely used as a proof of absence of minority components, is a highly unreliable criterion. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
Lattice‐patterned liquid crystal (LC)–polymer composites are representative candidates for the practical application of LC materials in high‐quality flexible displays. In this work, multicomponent prepolymers are used for the fabrication of lattice‐patterned LC–polymer composites via photoinduced phase separation. Phase separation behavior between LC and polymer is closely related to the solubility parameter of acrylate monomers in the prepolymers. The lattice structure of polymer walls formed by photoinduced phase separation between LC and polymers is stoichiometrically controlled by the composition of acrylate monomers with various solubility parameters. However, unlike the polymer wall structure, it is impossible to control the LC–polymer wall interfacial properties just by altering the composition of the acrylate monomers. The interfacial properties are found to be predominantly affected by a specific component, a fluorinated acrylate monomer, in the prepolymers, and thus the anchoring energy of polymer walls is controlled by incorporation of the fluorinated acrylate monomer. By selecting an appropriate combination of acrylate monomers in the prepolymers, both the phase separation structure and driving properties of lattice‐patterned LC–polymer composites can be controlled simultaneously. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号