首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring‐opening polymerization of L ‐ or D ‐lactide was realized at 140 °C for a period of 7 days in the presence of dihydroxyl poly(ethylene glycol) (PEG), with M?n = 4000 g mol?1, using zinc lactate as initiator. The resulting poly(L ‐lactide)–PEG–poly(L ‐lactide) and poly(D ‐lactide)–PEG–poly(D ‐lactide) triblock copolymers are water soluble with polylactide (PLA) block length ranging from 11 to 17 units. Both the tube inverting method and rheological measurements were used to evaluate the gelation properties of aqueous solutions containing single copolymers or L /D copolymer pairs. Stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks is observed for mixed solutions. Hydrogel formation is detected in the case of relatively long PLA blocks (DP PLA = 17), but not for copolymers with shorter PLA blocks (DP PLA = 11–13) due to partial racemization of L ‐lactyl units. Racemization is largely reduced when the reaction time is shortened to 1 day. Under these conditions, DP PLA of 8 is sufficient for the stereocomplexation of PLA–PEG block copolymers, and DP PLA above 10 leads to the formation of hydrogels of PLA–PEG block copolymers. On the other hand, racemization appears as a general phenomenon in the (co)polymerization of L ‐lactide with Zn(Lac)2 as initiator, although it is negligible or undetectable in the case of high molar mass polymers. Therefore, racemization is the limiting factor for the stereocomplexation‐induced gelation of water‐soluble PLA–PEG block copolymers where the PLA block length generally ranges from 10 to 30. Reaction conditions including initiator, time and temperature should be strictly controlled to minimize racemization. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Triblock copolymers of monomethoxy poly(ethylene glycol) (mPEG) and ε‐caprolactone (CL) were prepared with varying lengths of poly(ε‐caprolactone) (PCL) compositions and a fixed length of mPEG segment. The molecular characteristics of triblock copolymers were characterized by 1H NMR, gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), and differential scanning calorimetry (DSC). These amphiphilic linear copolymers based on PCL hydrophobic chain and hydrophilic mPEG ending, which can self‐assemble into nanoscopic micelles with their hydrophobic cores, encapsulated doxorubicin (DOX) in an aqueous solution. The particle size of prepared micelles was around 40–92 nm. The DOX loading content and DOX loading efficiency were from 3.7–7.4% to 26–49%, respectively. DOX‐released profile was pH‐dependent and faster at pH 5.4 than pH 7.4. Additionally, the cytotoxicity of DOX‐loaded micelles was found to be similar with free DOX in drug‐resistant cells (MCF‐7/adr). The great amounts of DOX and fast uptake accumulated into the MCF‐7/adr cells from DOX‐loaded micelles suggest a potential application in cancer chemotherapy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Adriamycin (ADR) was selected as a model drug to evaluate the potential applications of polylactide/poly(ethylene glycol)/polylactide (PLA/PEG/PLA) micelles as drug carriers in parenteral delivery systems. The PLA/PEG/PLA triblock copolymer micelles were characterized by dynamic light scattering and transmission electron microscopy. It was found that the micelle size increased with the increasing of the PLA chain length. The average size of ADR‐loaded micelles was 143.2 nm. The histogram analysis showed that the ADR‐loaded micelles possessed a narrow unimodal size distribution. The ADR loading contents of the micelles and ADR entrapment efficiency were dependent on the PLA chain length and PEG chain length in the copolymer. They increased with the increase of the PLA chain length, but the PEG chain length was identical and decreased with the increase of the PEG chain length; the length of the PLA block was similar. The initial amount of ADR also influenced the drug contents and entrapment efficiency (i.e., the more the initial amount added, the more the drug contents and the higher encapsulation efficiency). The drug release experiments indicated that the ADR‐loaded micelles possessed sustained release characteristics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1976–1982, 2001  相似文献   

4.
Linear‐dendritic ABA triblock copolymers containing PEG were used for transport the small guest molecules such as 5,7‐dibromo‐8‐hydoxy quinoline, ibuprofen, and Congo red. Nanocarriers containing guest molecules were soluble in water and in some of the organic solvents. Encapsulated guest molecules were soluble in some of the solvents, which they cannot be solved in them solely, for example, chloroform is a very poor solvent for Congo red, but encapsulated Congo red by nanocarriers is soluble in chloroform. The linear‐dendritic copolymers/guest molecule complexes were stable at room temperature for about 10 months; during this time, guest molecules did not release from linear‐dendritic copolymers/guest molecule complexes. The controlled release of guest molecules from linear‐dendritic copolymers/guest molecule complexes in vitro conditions also was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 267–272, 2007  相似文献   

5.
Three types of pegylated amphiphilic copolymers of poly(δ‐valerolactone) (PVL) were copolymerized with methoxy poly(ethylene glycol) (MePEG) and poly(ethylene glycol) (PEG4000 and PEG10,000), respectively. Pegylation of PVL allowed copolymers possessing amphiphilic property and efficiently self‐assembled to form micelles with a low critical micelle concentration (CMC) in the range of 10?7–10?8M. The average molecular weight of copolymers was in the range of 10,000–20,000 Da, and the polydispersity of copolymers was about 1.7–1.8. Higher mobility of low molecular weight PEG (i.e., MePEG and PEG4000) than high molecular weight PEG10,000 allowed valerolactone ring opening more efficient in terms of PVL/MePEG and PVL/PEG4000 copolymers possessing longer chain length in hydrophobic domain. Pegylated PVL with low CMC and triblock structure was preferred to encapsulate drug during micelle formation. Although all of these amphiphilic copolymers exhibited controlled release character, the micelles formed by triblock copolymer possessed a more stable core‐shell conformation than that by diblock copolymer, and resulted in the release of drug from triblock micelles slower than that from diblock micelles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1836–1841, 2006  相似文献   

6.
7.
Various problems, including high crystallinity, high melting temperature, poor thermal stability, hydrophobicity and brittleness, have impeded many practical applications of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) as an environmentally friendly material and biomedical material. In the work reported here, multi‐block copolymers containing PHBV and poly(ethylene glycol) (PHBV‐b‐PEG) were synthesized with telechelic hydroxylated PHBV as a hard and hydrophobic segment, PEG as a soft and hydrophilic segment and 1,6‐hexamethylene diisocyanate as a coupling reagent to solve the problems mentioned above. PHBV and PEG blocks in PHBV‐b‐PEG formed separate crystalline phases with lower crystallinity levels and lower melting temperatures than those of phases formed in the precursors. The crystallite dimensions of the two blocks in PHBV‐b‐PEG were smaller than those of the corresponding precursors. Compared to values for the original PHBV, the maximum decomposition temperature of the PHBV block in PHBV‐b‐PEG was 16.0 °C higher and the water contact angle was 9° lower. In addition, the elongation at break was 2.8% for a pure PHBV fiber but 20.9% for a PHBV/PHBV‐b‐PEG fiber with a PHBV‐b‐PEG content of 30%. PHBV‐b‐PEGs can overcome some of the disadvantages of pure PHBV; it is possible that PHBV might be a good candidate for the formulation of environmentally friendly materials and biomedical materials. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
A series of novel ABA‐type block copolymers were synthesized by polymerization of trans‐4‐hydroxy‐L ‐proline (HyP) in the presence of various molecular weight poly(ethylene glycol)s (PEGs), a bifunctional OH‐terminated PEG using stannous octoate as catalyst. The optimal reaction conditions for the synthesis of the copolymers were obtained with 5 wt % stannous octoate at 140°C under vacuum (20 mmHg) for 24 h. The synthesized copolymers were characterized by IR spectroohotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometer. The glass transition temperature (Tg) of the copolymers shifted to significantly higher temperature with increasing the number average degree of polymerization and HyP/PEO molar ratio. In contrast, the melting temperature (Tm) decreased with increasing the HyP/PEO molar ratio. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1581–1587, 2001  相似文献   

9.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

10.
Semi‐interpenetrating polymer networks (SIPNs) consisting of polycaprolactone (PCL) and poly(ethyleneglycol) (PEG) macromer was prepared to improve tensile property in developing biodegradable sutures. When the PEG macromer formed SIPNs with PCL, biodegradability, mechanical strength, and hydrophilicity were improved. The SIPNs fibers formed from the dry spinning process showed an increase of not only tensile strength but also water content with an increase of PEG content. These results represent an increase of the crosslinking density of the PEG network with hydrophobic property. The drawing of SIPNs fibers also further enhanced the tensile strength and the crystallinity of the SIPNs fibers. Unimelting temperature of the SIPNs fiber was observed as an indication of the polymer network without phase separation. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 835–841, 2002; DOI 10.1002/app.10351  相似文献   

11.
The new acid-labile poly(ethylene glycol) (PEG) nanogels were prepared by copolymerization of a new crosslinking agent containing orthoester groups (OEAM) and methoxypolyethylene glycol acrylate (MPEGAC). DOX was loaded into PEG nanogels with a loading content of 18.2%, which was highly desirable for targeted cancer therapy without premature drug release in neutral environment. The cellular uptake and cytotoxicity of DOX-loaded PEG nanogels were measured using SH-SY5Y and HepG2 cells. Tumor penetration and antitumor activity were investigated using SH-SY5Y tumor-like spheroids. All results demonstrate that the pH-sensitive PEG nanogels may be used as potential drug carriers for chemotherapy.  相似文献   

12.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

13.
The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron‐beam (E‐beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine‐derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultra‐fast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight (Mw) of all tested polymers decreases upon gamma and E‐beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol‐tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

  相似文献   


14.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

15.
The synthesis of 2,2,3,3‐tetrahydro‐perfluoroundecanoyl end‐functionalized polystyrene–poly(ethylene oxide) block (PS‐block‐PEO‐RF) copolymers and their matching PS‐block‐PEO diblock copolymers was carried out by sequential anionic polymerization. Viscometry and 19F NMR studies show that the PS‐block‐PEO copolymers, in contrast to their matching PS‐block‐PEO‐RF copolymers, exhibit a micellar rather than the associative behavior seen for the latter. However, the presence of an excess of fluorinated acid, used for end‐functionalization, produces a reduction of the associative behavior above the overlap concentration, with the fluorinated acid acting like a surfactant. A competition may also occur between PS—and RF—mediated micellization. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Polyacrylamide/poly(ethylene oxide) (PAAm/PEO) crosslinked hydrogels were designed for controlled delivery of an herbicide, Atrazine, which is used in the agricultural field. Atrazine was incorporated into a PAAm/PEO matrix during an electron beam irradiation process. The Atrazine release rate from matrices prepared under different conditions was studied to determine which factors have the most affect and control over the PAAm/PEO matrix release property. The copolymer blend composition, copolymer gel content, and irradiation dose greatly affected the Atrazine release rate. In addition, its release rate was influenced by the pH and temperature of the matrix‐surrounding medium. The Atrazine release rate decreased as the pH increased, but it increased as the temperature increased. The properties of the prepared crosslinked hydrogels may make them acceptable for practical use as bioactive controlled release matrices. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1262–1270, 2005  相似文献   

17.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

18.
Poly(ethylene glycol) diacrylate (PEG‐DA) hydrogels have been widely utilized to investigate cell–material interactions and as scaffolds for tissue engineering. Traditionally, PEG‐DA hydrogels are prepared via the UV‐cure of aqueous precursor solutions, but afford a limited range of pore size and interconnectivity that is essential for cellular proliferation and neotissue formation. To overcome these limitations, macroporous PEG‐DA hydrogels are prepared in this study using a combination of solvent‐induced phase separation (SIPS) and a fused salt template. PEG‐DA concentration in the organized fabrication solvent (20, 30, and 40 wt%) and average salt particle size (≈180, ≈270, and ≈460 μm) are varied and the resulting hydrated hydrogel morphology, swelling, mechanical properties, and degradation are characterized. These templated SIPS PEG‐DA hydrogels broaden PEG‐DA hydrogel properties and, in some cases, afford a series of compositions whose properties are decoupled.

  相似文献   


19.
Amphiphilic polycarbonate copolymers including methoxy‐terminated poly(ethylene glycol)‐co‐poly (5,5‐dimethyl trimethylene carbonate) [Poly(PEG‐b‐TMC)] and poly(ethylene glycol)‐co‐poly(trimethylene carbonate) [Poly(PEG‐b‐DTC)] were synthesized. The water‐in‐oil‐in‐water (W/O/W) solvent evaporation technique was adopted to produce anticancer magnetic Poly(PEG‐b‐DTC) microspheres containing tumor necrosis factor‐α (TNF‐α) genes and Fe3O4 magnetic ultrafine powder. Drug release studies showed that the microspheres can sustain a steady release rate of TNF‐α genes in 0.1M phosphate buffer saline solution in vitro for up to 60 h. In vitro cytotoxicity assays demonstrated that the microspheres have high inhibition and antitumor action to human hepatocellular carcinoma (Bel‐7204) cells in vitro. In vivo inhibition on the growth of hepatic carcinomas and histopathologic observation indicated that the microspheres possess a markedly high antitumor activity to human hepatocellular carcinoma (Bel‐7204). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Polymeric materials prepared from renewable natural resources are now being accepted as “bio‐based polymers”, because they are superior to the conventional petroleum‐based polymers in reducing the emission of carbon dioxide. Among them, poly(L ‐lactide) (PLLA) prepared by fermentation and polymerization is paid an immediate attention. Although PLLA exhibits a broad range of physico‐chemical properties, its thermal and mechanical properties are somewhat poorer for use as ordinary structural materials. For improving these inferior properties, a stereocomplex form consisting of PLLA and its enantiomer poly(D ‐lactide) (PDLA) has high potential because of showing high melting nature (230 °C). It can be formed by simple polymer blend of PLLA and PDLA or more easily with stereoblock polylactides (sb‐PLA) which are PLLA/PDLA block copolymers. These novel PLA polymers, named “Neo‐PLA”, can provide a wide range of properties that have never be attained with single PLLA. Neo‐PLA retains sustainability or bio‐based nature, because both monomers L ‐ and D ‐lactic acids are manufactured from starch by fermentation. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号