首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型增韧剂对PBT/PC合金增韧的研究   总被引:1,自引:0,他引:1  
以双烯烃、苯乙烯、甲基丙烯酸甲酯为单体,采用种子聚合技术,合成了具有核-壳结构的接枝共聚物(MIS树脂),并与PBT/PC合金共混.结果表明,MIS树脂为15~18份时,PBT/PC合金的冲击强度最大.加入MIS树脂后,PBT/PC合金的断层明星,而且出现了很多小空洞,提高了PBT/PC合金的力学性能.MIS树脂可以用...  相似文献   

2.
对增韧聚碳酸酯(PC)/聚酯[聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)]合金进行了研究,结合合金的相形貌结果,分别选择PC和聚酯是连续相的合金进行了研究,同时对比了相同树脂比例下PC/PET和PC/PBT之间性能的差别。增韧剂选择甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)或MBS和接枝环氧基团的丙烯酸酯类增韧剂(X-GM A)复配物。结果表明,使用相同的增韧剂,PC是连续相的情况下,冲击强度更高,相同树脂比例情况下,PC/PET合金冲击强度比PC/PBT的差,拉伸和弯曲强度相差不大,PC/PET合金的熔体稳定性能比PC/PBT的差,PC是连续相合金的熔体稳定性比聚酯是连续相的要好,含有X-GMA的合金熔体稳定性能更好,这些结果和酯基的热分解、PET分子链运动活性比PBT的差以及酯交换程度的差异等有直接的关联。  相似文献   

3.
利用双螺杆挤出机制备了阻燃PBT/ABS系列合金,探讨了甲基丙烯酸甲酯/丁二烯/苯乙烯共聚物(MBS)和乙烯/丙烯酸甲酯/甲基丙烯酸缩水甘油酯无规三元共聚物(EMA-GMA)对阻燃PBT/ABS合金的增韧和增容作用,采用力学测试方法、差示扫描量热分析仪(DSC)和扫描电子显微镜(SEM)研究了MBS和EMA-GMA对阻燃PBT/ABS合金的力学性能和相容性的影响。结果表明:在阻燃PBT/ABS合金(80/20)体系中,加入6%MBS,合金的的缺口冲击强度为9.8 kJ/m2,是没加MBS时的1.5倍左右,而EMA-GMA与MBS复合后,具有一定的协同效应,当EMA-GMA、MBS质量分数分别为4%、4%时,合金的拉伸强度为36.5 MPa,1.6 mm阻燃等级为V-0,缺口冲击强度达到13.5 kJ/m2。  相似文献   

4.
用光盘回收的聚碳酸酯(PC)树脂制备了丙烯腈-丁二烯-苯乙烯共聚物(ABS)/PC合金,探讨了回收PC含量、增容剂种类对合金力学性能的影响。结果表明,ABS/PC合金的拉伸强度随回收PC含量的增加而逐渐增大,冲击强度则呈先增长后下降的趋势,在回收PC含量为10 %(质量分数,下同)时达到最大值;增容剂甲基丙烯酸甲脂-丁二烯-苯乙烯共聚物(MBS)比甲基丙烯酸环氧丙酯接枝乙烯-辛烯共聚物(POE-g-GMA)更能改善ABS和PC的相容性,显著提高合金冲击强度,当回收PC含量为5 %时,用MBS增容的ABS/PC合金的冲击强度比纯ABS提高了42.8 %。  相似文献   

5.
研究了新型增容剂丙烯酸酯与甲基丙烯酸缩水甘油酯双官能化乙烯类弹性体(KY-6B)对PC/PBT合金性能及结构的影响。结果表明,随着KY-6B含量的增加,PC/PBT合金的拉伸强度、弯曲强度及弯曲弹性模量逐渐降低,而缺口冲击强度、断裂伸长率逐渐提高,非缺口冲击强度变化不大。当KY-6B含量超过10%后,PC/PBT合金的上述性能变化不明显。红外图谱显示,KY-6B的存在使PC与PBT的C=0吸收峰更靠近。差示扫描量热测试结果表明,KY-6B可使PC/PBT合金中PC与PBT两者的Tg之差减小,PBT的熔点、熔融焓、结晶温度有所降低。扫描电镜图谱显示,随KY-6B含量增加,PC/PBT合金的冲击断面逐渐变得粗糙,孔洞化和银纹丝状连接增多。上述结果都表明KY-6B是PC/PBT合金的优良增容剂和抗冲击改性剂。  相似文献   

6.
A series of methyl methacrylate‐butadiene‐styrene (MBS) graft copolymers were synthesized via seeded emulsion polymerization techniques by grafting styrene and methyl methacrylate on poly(butadiene‐co‐styrene) (SBR) particles. The chlorinated poly(vinyl chloride) (CPVC)/MBS blends were obtained by melting MBS graft copolymers with CPVC resin, and the effect of the core/shell ratio of MBS graft copolymer and SBR content of CPVC/MBS blends on the mechanical properties and morphology of CPVC/MBS blends was studied. The results showed that, with the increase in the core/shell ratio, the impact strength of the blend increased and then decreased. It was found that, when the core/shell ratio was 50/50, the impact strength was about 155 J/m, and the tensile strength evidently increased. The toughness of the CPVC/MBS blend was closely related to the SBR content of the blend, and with the increasing of SBR content of blend, the impact strength of the blend increased. The morphology of CPVC/MBS blends was observed via scanning electron microscopy. Scanning electron microscopy indicated that the toughness of CPVC/MBS blend was consistence with the dispersion of MBS graft copolymers in the CPVC matrix. J. VINYL ADDIT. TECHNOL., 22:501–505, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
采用自制的甲基丙烯酸缩水甘油酯熔融接枝丙烯腈丁二烯苯乙烯三元聚合物\[ABS-g-(GMA-co-St),AGS]为改性剂,对聚对苯二甲酸丁二醇酯(PBT)/聚碳酸酯(PC)(80/20)共混物进行改性研究。通过扫描电子显微镜、差示扫描量热仪、力学性能和流变性能测试研究了改性后共混物的性能。结果表明,随着AGS含量的增加,共混物中两相间的界面黏结增强; AGS对PBT/PC共混物具有强韧化的作用,与未添加AGS的PBT/PC共混物相比,当AGS含量为10份时,共混物的缺口冲击强度和拉伸强度分别提高了49.8 %和17.4 %;AGS的加入提高了共混物的界面强度和相容性;添加AGS能够提高共混物的结晶峰温度,起到促进晶粒生长的作用。  相似文献   

8.
研究了新型增容剂丙烯酯与缩水甘油酯双官能化的乙烯类弹性体(KY-6B)对PC/PBT合金的性能及结构的影响.结果表明,随着KY-6B含量的增加,C/PBT合金的拉伸强度、弯曲强度及弯曲模量逐渐下降,而缺口冲击强度、断裂伸长率逐渐上升,非缺口冲击强度变化不大.PC/PBT合金的上述性能当KY-6B含量超过8%时变化不明显.IR图谱显示,Y-6B的存在使PC与PBT的C=O吸收峰更靠近.DsC测试结果表明,Y-6B可使PC/PBT合金中PC与PBT两者的Tg之差减小,BT的熔点、熔融烩、结晶温度有所降低.SEM图谱显示,随KY-6B含量增加,PC/PBT合金的冲击断面逐渐变得粗糙、孔洞化和银纹丝状连接增多.上述测试结果都表明KY-6B是PC/PBT合金的优良增容剂和冲击改性剂.  相似文献   

9.
MBS树脂合成技术的中试研究(Ⅰ)SBR胶乳的合成   总被引:2,自引:2,他引:0  
从单体配比和SBR胶乳粒径对PVC/MBS合金抗冲性能和透光率的影响方面详细阐述了MBS接枝用SBR胶乳“粒子设计”的依据;在小试配方的基础上进行了SBR胶乳的中试试验,着重研究了SBR胶乳聚合过程和乳化剂用量、反应温度及搅拌速度等对SBR胶乳粒径和体系稳定性的影响,并将SBR胶乳中试结果与小试结果进行了对比,确定了中试配方和工艺条件,为5000t/aMBS生产装置的设计提供了依据。  相似文献   

10.
研究了PC/ABS合金的相容性及适宜的合金比例,探讨了MBS对PC/ABS合金的增容和增韧作用,MBS对PC/ABS合金的力学性能和形态结构的影响。结果表明:在PC/ABS合金(70/30)体系中,加入6份MBS形成的复合材料与没有加入MBS相比,其相畴分布更加均一,冲击强度提高了40kJ/m2,拉伸强度、弯曲强度和热变形温度得到了较好的保持。  相似文献   

11.
研究了丙烯酸酯与甲基雨烯酸缩水甘油酯双官能化的乙烯类弹性体KTR-6C对PC/PBT共混体系相容性以及力学性能的影响。结果表明.KTR-6C的加入.改善了PC/PBT之间的相容性,改善了PC/PBT共混体系的加工流动性能和外观。随着KTR-6C用量的增加.PC/PBT的熔体质量流动速率增加;KTR-6C的加入.起到了很好的增韧作用,极大的提高了PC/PBT共混体系的冲击强度.当其用量为7份时达到最大值.为纯PC/PBT的20倍。  相似文献   

12.
The relationship between the microstructure developed during injection molding of liquid crystalline polymers (LCPs) containing blends and their mechanical properties, was studied. A wholly aromatic copolyester LCP was melt blended in various levels with polycarbonate (PC), poly(butylene terephthalate) (PBT), Nylon 6 (N-6), and amorphous nylon (AN). In all cases the LCP was the minor component. The resulting injection molded structure had a distinct skin core morphology, where elongated fibrous LCP particles comprised the skin layer and spherical and ellipsoidal ones composed the core section. The highest elongation and the finest diameter LCP fibrils were obtained with AN/LCP system, followed by PC/LCP. PBT/LCP blends showed a coarser morphology, while N-6/LCP system did not correlate with the tensile moduli of the injection molded specimens. AN/LCP blends demonstrated the highest moduli values, consistent with the highest orientations observed using electron microscopy, followed by PC/LCP, PBT/LCP, and N-6/LCP. Finally, tensile strength levels were correlated with both orientation levels and interfacial adhesion between the polyblend components. AN/LCP that exhibited the highest orientation and good adhesion appearance gave the highest tensile strength values followed by PC/LCP, PBT/LCP, and N-6/LCP polyblends.  相似文献   

13.
The Izod impact strength of poly(vinyl chloride)/methyl methacrylate/butadiene/styrene(PVC/MBS)polymer blends can be changed significantly with different levels of MBS and/or MBS particle size. The following results were obtained by investigating the fracture of PVC/MBS test specimens: (1) The dependence of the Izod impact strength of PVC/MBS blend on MBS particle size confirms a maximum around a MBS particle size of 2000 Å. When MBS particle size is smaller than 2000 Å, the Izod impact strength increases with MBS particle size, and crazing occurs mainly in this region. When MBS particle size is larger than 2000 Å, then the Izod impact strength, in contrast, decreases with increasing MBS particle size, and both crazing and shear yielding occur, mainly in this region. (2) Tensile experiments of PVC/MBS blends carried out under various conditions showed that the amount of energy absorption increases with decreasing MBS inter-particle distance and with increasing MBS particle size when crazing is the main energy absorbing mode. The MBS inter-particle distance dominates the energy absorption when shear yielding is the main energy absorbing mode. (3) Therefore, the Izod impact strength of PVC/MBS blends and the maximum around a MBS particle size of 2000 Å can be explained as follows: Below 2000 Å, the energy absorption by crazing dominates the total energy absorption, and the energy absorption by crazing increases with MBS particle size. Above 2000 Å, the energy absorption by shear yielding is dominant, and the energy absorption by shear yielding increases with decreasing inter-particle distance, that is to say, decreasing MBS particle size.  相似文献   

14.
研究了聚对苯二甲酸丁二醇酯(PBT)/聚碳酸酯(PC)合金薄膜材料的透光率、表面张力、表面电阻、碳粉附着力、打印顺畅性等证件行业需求的薄膜材料特性;用PBT/PC合金薄膜材料与聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯(PETG)卡基材料在一定温度、压力下层压制证,研究了其最佳层压制证条件,研究了PBT/PC合金薄膜材...  相似文献   

15.
利用双螺杆挤出机制备了核壳结构的甲基丙烯酸甲酯-丁二烯-苯乙烯塑料(MBS)与聚碳酸酯(PC)的熔融共混物。研究了MBS对PC/MBS合金常温力学性能和低温缺口冲击强度的影响;利用原子力显微镜观察了MBS在PC/MBS合金中的分布形态;扫描电子显微镜观察表明,MBS增韧PC的机理符合空穴理论。  相似文献   

16.
Vibration welding is used to assess the weldability of poly(butylene terephthalate) (PBT) and a polycarbonate/poly(butylene terephthalate) blend (PC/PBT) to each other and to other resins and blends: PBT to PC/PBT, PBT to modified poly(phenylene oxide) (M-PPO), PBT to polyetherimide (PEI) and PEI to a 65 wt% mineral-filled polyester blend (65-PF-PEB), PBT to a poly(phenylene oxide)/polyamide blend (PPO/PA), PC/PBT to M-PPO, and PC/PBT to PPO/PA. Based on the tensile strength of the weaker of the two materials in each pair, the following relative weld strengths have been demonstrated: PBT to PC/PBT,98%; PBT to PEI, 95%; 65-PF-PEB to PEI, 92%; and PC/PBT to M-PPO, 73%. PBT neither welds to M-PPO nor to PPO/PA, and PC/PBT does not weld to PPO/PA.  相似文献   

17.
Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra‐functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E‐MA‐GMA and the effect of the epoxy monomer were investigated. It was found that E‐MA‐GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E‐MA‐GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E‐MA‐GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact‐fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.‐% or more elastomer.

SEM micrographs of freeze‐fractured surfaces of PBT/E‐MA‐GMA blend illustrating the finer dispersion of E‐MA‐GMA in the presence of epoxy monomer.  相似文献   


18.
The object of this study was to investigate the physical properties and morphology of melt-mixed blends containing poly(butylene terephthalate) (PBT) with several functionalized polyolefins such as ethylene/vinyl acetate copolymer (EVA), EVA-g-maleic anhydride (EVA-g-MAH), EVA-g-ACID, EVA-g-ACID/ACRYLATE, ethylene methacrylate-g-MAH (EMA-g-MAH), ethylene/ethyl acrylate copolymer (EEA) and an ethylene ionomer. Special focus was made on PBT/EVA-g-MAH and PBT/EMA-g-MAH blends compared with PBT/EVA and PBT/EMA blends. Blends were prepared in a counter-rotating twin-screw extruder. Mechanical and thermal properties, glass transition temperature and morphology were examined using a tensile testing machine, differential scanning calorimeter (DSC), dynamic mechanical analysis and Scanning Electron Microscope (SEM). PBT/EVA-g-MAH and PBT/EMA-g-MAH blends exhibited better impact strength than PBT/EVA and PBT/EMA blends because of the larger interfacial adhesion of EVA-g-MAH and EMA-g-MAH with PBT than EVA and EMA.  相似文献   

19.
New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with ethylene–butylacrylate–glycidyl methacrylate copolymer (PTW) and ethylene‐1‐octylene copolymer (POE) in a twin‐screw extruder. The mechanical properties of PBT/PC blends were investigated. The presence of PTW or POE could improve the mechanical properties except for the tensile strength and flexural properties of the PBT/PC blends. However, a combination use of PTW and POE had a strong synergistic effect, leading to remarkable increases in the impact strength, elongation at break, and Vicat temperature and some reduction of the tensile strength and flexural properties. The relationship between mechanical properties and morphology of the PBT/PC/PTW/POE blends was studied. The morphology was observed by scanning electron microscopy and the average diameter of dispersed phase was determined by image analysis, and the critical interparticle distance for PBT/PC was determined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 54–62, 2006  相似文献   

20.
将乙烯–辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙烯–辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POEg-GMA)复配作为增容剂,采用熔融共混的方法制备尼龙(PA)6/聚对苯二甲酸丁二酯(PBT)合金。通过扫描电子显微镜、力学性能和吸湿性研究了PA6/PBT配比和增容剂用量对合金性能的影响。研究表明,增容剂的加入能改善PA6/PBT合金的相容性,PBT和增容剂的加入能有效地抑制PA6的吸水率。添加15份增容剂可使合金的缺口冲击强度达到15.5 k J/m~2,相比未加入增容剂提高385.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号