首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two ethylene/propylene diene monomer (EPDM) polymers were blended with a liquid crystalline polymer (LCP) at concentrations of 10, 20, 30 and 40 wt-%. The effects of ethylene/propylene (EP) ratio on the in situ fibrillation, and hence the reinforcing characteristics, of the LCP in EPDM-LCP blends were studied. The fibre forming capacity of the LCP depended on the viscosity of the EPDM rubber. Under high temperature processing conditions (at 300°C), the high EP ratio EPDM, which had the higher viscosity, facilitated the fibrillation of the LCP. Further melt processing at 100°C, followed by curing at 150°C, decreased the reinforcing effects of the LCP owing to breakage of the fibrils under the high shear stresses developed in the high viscosity matrix. However, this degradation of fibre lengths depended on the LCP concentration. After curing, the more viscous EPDM formed blends with higher stiffnesses and strengths than those obtained from the low viscosity EPDM. Both the nucleation and growth of crystal domains in the EPDM matrix were promoted by small amounts of LCP. Again the effects were more pronounced in the EPDM with the higher EP ratio.  相似文献   

2.
The effect of size of crosslinked monodisperse spherical polymer particles on the steady shear and dynamic rheology of filled poly(methyl methacrylate) (PMMA) composites was studied for PMMA and polystyrene (PS) particles in the range from 0.1 to 1.3 micron particle size. For PMMA matrices filled with crosslinked PS particles, reduction in filler size increases non‐Newtonian behavior. Particle size effects on the rheology of filled PMMA were much less pronounced for PMMA filler. The rate of growth of steady shear viscosity with aging time was much larger for PMMA filled with PS particles than with PMMA particles. The apparent yield stress of filled PMMA composites was estimated from Casson plots. The yield stress was negligible for PMMA filler but increased with decreasing particle size for PS filler. We suggest that PS particles are rejected by the PMMA matrix and form clusters, causing large enhancements in viscosity and moduli. Polym. Eng. Sci. 44:452–462, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS.  相似文献   

4.
When silica (SiO2) fillers were introduced into the polypropylene (PP) and liquid‐crystalline polymer (LCP) blend, it was found that the mixing sequence, the filler size, and the filler surface nature affected the rheology of the composites and the morphology of the LCP phase in the ternary composite. In particular, the compatibility between the filler and the PP matrix was found to exert a strong influence on the droplet‐fibril transition. The incorporation of the hydrophobic silica to the LCP/PP blend facilitated the fibrillation of LCP because the hydrophobic filler demonstrated affinity towards the hydrophobic PP matrix. The preferential residence of the hydrophobic silica in the PP phase would minimise the LCP domain disruption leading to the formation of LCP fibrils with high aspect ratios. The use of fine filler and in situ blending, which promoted the filler–LCP interaction, could prevent coalescence, inhibit deformation and hinder fibril development as well. © 2003 Society of Chemical Industry  相似文献   

5.
Organically‐modified montmorillonite clay nanocomposites of poly(styrene‐co‐acrylonitrile) (SAN), poly(methyl methacrylate) (PMMA) and SAN/PMMA miscible blend are investigated. Structure characteristics at the nanoscale and microscale and thermal and tensile properties are studied as a function of polymer blend composition and filler loading fraction. Blend miscibility and Tg are unaffected by up to 10% by wt. organoclay. Thermal degradation stability increases with SAN content and exhibits an optimum value of clay loading. Stiffness shows significant improvement. Tensile strength and elongation‐at‐break suffer as a result of nanocomposite formation. Modulus shows a maximum enhancement of 57% (5 ± 0.06 GPa at 10 wt% filler, 20/80 SAN/PMMA) and varies linearly with clay fraction for all compositions of matrix phase. Predictions of Halpin–Tsai composite model are in excellent agreement with the experimental behavior over full range of polymer blend composition. Fundamental aspects of a polymer blend–clay nanocomposite are clarified, such as lack of additional synergy between clay platelets and matrix, and tensile ductility reduction, compared with polymer–clay system. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
A facile route was adopted to blend the matrix. The PMMA/PEG blend was reinforced with three types of nanofillers, i.e., pristine MWCNT (P-CNT), amine functionalized MWCNT (PDA-EA-CNT) and nanobifiller i.e. nanodiamond functional MWCNT (PDA-EA-CNT-ND) to yield three different types of nanocomposites i.e. PMMA/PEG/P-CNT, PMMA/PEG/PDA-EA-CNT and PMMA/PEG/PDA-EA-CNT-ND. These nanocomposites were reinforced with nanofiller loading (1 wt. %, 3 wt. %, 5 wt. %, 10 wt. %, 30 wt. % and 50 wt. %) by solution casting method. Structure of composite and nanofillers was confirmed by FTIR. FESEM imaging revealed that nanocomposites have micro porous morphology. At high magnification, distribution of functionalized CNT/ND appears to be protruding out of the polymeric matrix. The TGA result suggests that the thermal stability of the nanocomposites was enhanced in comparison to PMMA due to grafting of filler molecules with PMMA/PEG macromolecules. The DTG results showed that the bifiller nanocomposites (PMMA/PEG/PDA-EA-CNT-ND) exhibited improved thermal stability with Tmax (431°C) as compared to P-CNT and amine functionalized CNT (PMMA/PEG/PDA-EA-CNT) with Tmax of 395°C and 418°C respectively. XRD results showed fine interaction between filler and the polymeric matrix. As the filler loading was increased the composites showed pronounced XRD peak at 25.9°, corresponding to (002) reflection of nanotubes. Significant improvement in the mechanical properties of composites was recorded with the reinforcement of fillers as compared to the neat matrix. The most significant improvement in tensile strength and elastic modulus was observed for the bifiller nanocomposites with 5 wt. % PDA-EA-CNT-ND. They showed a tensile strength and elastic modulus of 29.9 MPa and 1474.31 MPa respectively as compared to amine functionalized CNT with tensile strength (25.7) and elastic modulus (1466.99 MPa)and P-CNT with tensile strength(25 MPa) and elastic modulus (1155.75 MPa).  相似文献   

7.
The shear viscosity, the shear compliance, and their shear rate dependence were determined by a Weissenberg rheogoniometer, and the effect of the grafted poly(methyl methacrylate) chains on the intensification of the interaction at the interface between the ionomer matrix and the filler was discussed. Results were as follows: (1) The relative viscosity of the ionomer filled with MMA-grafted perlite to the matrix ionomer and the yield stress increased with increase in the volume fraction of perlite, and these behaviors were more remarkable in the case of the perlite with larger quantity of grafted PMMA. (2) The effective thickness of the immobilized matrix layer on the filler surface in the Ziegel equation and the crowding factor in the Mooney equation showed larger values in the case of the filled systems of MMA-grafted perlite than in the case of the unmodified perlite. (3) At the same total volume fraction which was the sum of the quantities of the perlite and the grafted PMMA, the relative viscosity and the crowding factor showed respectively a maximum with the quantity of grafted PMMA. (4) The shear compliance of these filled systems decreased with perlite content. A little effect of the amount of grafted PMMA on the compliance was observed at the same volume fraction of perlite. According to these rheological properties, it could be concluded that the grafted PMMA chains were effective in increasing the interaction between the ionomer matrix and the perlite at their interface, particularly in the lower shear rate region.  相似文献   

8.
The mechanical and heat‐resistant properties of acrylonitrile–butadiene–styrene (ABS) binary and ternary blends were investigated. The relationship of compatibility and properties was discussed. The results show that poly(methyl methacrylate) (PMMA) and styrene–maleic anhydride (SMA) can improve the thermal properties of conventional ABS. The Izod impact property of ABS/PMMA blends increases significantly with the addition of PMMA, whereas that of ABS/SMA blends decreases significantly with the addition of SMA. Blends mixed with high‐viscosity PMMA are characterized by higher heat‐distortion temperature (HDT), and their heat resistance is similar to that of blends mixed with SMA. For high‐viscosity PMMA, from 10 to 20%, it is clear that blends appear at the brittle–ductile transition, which is related to the compatibility of the two phases. TEM micrographs show low‐content and high‐viscosity PMMA in large, abnormally shaped forms in the matrix. Compatibility between PMMA and ABS is dependent on both the amount and the viscosity of PMMA. When the amount of high‐viscosity PMMA varied from 10 to 20 wt %, the morphology of the ABS binary blends varied from poor to satisfactory compatibility. As the viscosity of PMMA decreases, the critical amount of PMMA needed for the compatibility of the two phases also decreases. SMA, as a compatibilizer, improved the interfacial adhesiveness of ABS and PMMA, which results in PMMA having good dispersion in the matrix. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2652–2660, 2002  相似文献   

9.
Two liquid‐crystalline polyesters (LCPs) with different chain rigidities were synthesized and melt‐blended with polycarbonate (PC) at an LCP concentration of 2 wt %. The first LCP (LCP1) was based on hydroxybenzoic acid (HBA), hydroquinone (HQ), sebacic acid (SEA), and suberic acid (SUA) and contained a relatively high concentration of flexible units (SEA and SUA). The other one (LCP2) was based on HBA, hydroxynaphthoic acid, HQ, and SEA and contained a lower concentration of flexible units. LCP2 had a much lower melting point, a higher clearing temperature, and a lower shear viscosity than LCP1. The blending was carried out at 265, 280, and 300°C for both systems. The extent of the viscosity reduction induced by the addition of LCP1 depended on the compounding temperature, and the lowest viscosity was achieved with blending at 280°C. This was attributed to the large interfacial area and interactions between the flexible segments of LCP1 and PC chains at the interface. For PC/LCP2, the viscosity reduction was not significantly dependent on the compounding temperature, and when it was compounded at 280°C, its viscosity was significantly higher than that of PC/LCP1 at high shear rates, even though LCP2 had lower viscosity. A scanning electron microscopy study revealed that, with compounding at 265 and 280°C, LCP2 was poorly dispersed in the PC matrix in comparison with LCP1, and the glass‐transition‐temperature depression caused by the addition of LCP2 was relatively small. This indicated that interfacial interactions in PC/LCP2 were weaker, thereby explaining their different rheological behavior in comparison with PC/LCP1. With compounding at 300°C, the compatibility of both systems improved because of transesterification reactions, but this did not lead to a lower viscosity because of the lack of physical interfacial interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 960–969, 2004  相似文献   

10.
This research deals with the melt rheology of isotactic polypropylene (iPP) reinforced with short glass fibers (SGF) coated with electrically conductive polyaniline (PAn). Composites containing 10, 20, and 30 wt % PAn‐SGF were studied. Moreover, a composite of 30 wt % PAn‐SGF was also prepared with a blend of iPP and PP‐grafted‐maleic anhydride (iPP/PP‐gMA). The composites showed linear viscoelastic regime at small strain amplitudes. The onset of nonlinearity decreased as the concentration of filler increased. The time‐temperature superposition principle applied to all composites. The filler increased the shear moduli (G′, G″) and the complex viscosity η*. Steady‐state shear experiments showed yield stress for the composites with 20 and 30 wt % PAn‐SGF. Strikingly, the 10 wt % composite showed higher steady state viscosity than the 20 wt %. Rheo‐optics showed that shear induced disorder of microfibers at a concentration of 10 wt %. However, at 20 wt % concentration shear aligned the microfibers along the flow axis, this would explain the anomalous steady state viscosity values. The viscosity exhibited a shear thinning behavior at high shear rates for all composites. Creep experiments showed that the filler induced greater strain recovery in the composites and that the amount of strain recovery increased as the PAn‐SGF concentration increased. However, the enhancement of strain recovery (as well as shear viscosity) was more significant when using the iPP/PP‐gMA blend, suggesting greater adhesion between this matrix and the filler PAn‐SGF. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
A systematic research has been conducted to investigate the matrix properties by introducing nanosize TiO2 (5 nm, 2.0–30% by weight) filler into a poly (methyl methacrylate) (PMMA) resin. A twin screw extraction process was developed to disperse the particles into the PMMA. The thermal, mechanical, and viscoelastic properties of the virgin PMMA and nanoTiO2‐PMMA composite were measured. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the PMMA. Nanocomposite shows increase in storage modulus (~ 60%), rubbery modulus (~ 210%), glass transition temperature (~ 27%), crosslink density (~ 213%), initial decomposition temperature (~ 83% at 1% wt. loss), and activation energy (~ 141%). Mechanical performance and thermal stability of the nanoTiO2‐PMMA composites are depending on the dispersion state of the TiO2 in the PMMA matrix. Scanning electron microscopic study shows that the particles are well dispersed in the PMMA matrix. They are correlated with loading. Kinetics for thermal degradation analysis was studies. The integral procedural decomposition temperature (IPDT) is enhanced (~ 117%). The nanocomposites of high activation energy possess high thermal stability. Interrelation of Tg, crosslink density, IPDT, storage modulus, activation energy, and TiO2 weight percent are established. Various reasons for these effects in terms of reinforcing mechanisms have been discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

13.
A fumed hydrophilic nano‐silica‐filled polypropylene (PP) composite was blended with a liquid‐crystalline polymer (LCP; Rodrun LC5000). The preblended polymer blend was extruded through a capillary die; this was followed by a series of rheological and morphological characterizations. The viscosity of the PP matrix increased with the addition of the hydrophilic nano‐silica. At shear rates between 50 and 200 s?1, the composite displays marked shear‐thinning characteristics. However, the incorporation of LC5000 in the PP composite eliminated the shear‐thinning characteristic, which suggests that LC5000 destroyed the agglomerated nano‐silica network in the PP matrix. Although the viscosity ratio of LCP/PP was reduced after the addition of nano‐silica fillers, the LCP phases existed as droplets and ellipsoids. The nano‐silicas were concentrated in the LC5000 phase, which hindered the formation of LCP fibers when processed at high shear deformation. We carried out surface modification of the hydrophilic nano‐silica to investigate the effect of modified nano‐silica (M‐silica) on the morphology of the PP/LC5000 blend system. Ethanol was successfully grafted onto the nano‐silica surface with a controlled grafting ratio. The viscosity was reduced for PP filled with ethanol‐M‐silica when compared to the system filled with untreated hydrophilic nano‐silica. The LC5000 in the (PP/M‐silica)/LC5000 blend existed mainly in the form of fibrils. At high shear rates (e.g., 3000 s?1), the LC5000 fibril network was formed at the skin region of the extrudates. The exclusion of nano‐silica in the LC5000 phase and the increased viscosity of the matrix were responsible for the morphological changes of the LCP phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1484–1492, 2003  相似文献   

14.
The effect of the viscosity ratio of the dispersed LCP phase to the polystyrene/poly(phenylene oxide) (PS/PPO) thermoplastic matrix on the rheological, morphological, and resultant mechanical properties of the LCP blends was investigated. The viscosity of PS/PPO is largely dependent on the blend composition, so that different levels of viscosity ratios of dispersed LCP phase to PS/PPO thermoplastic matrix are obtained by using PS/PPO premixtures of different blend ratios as a thermoplastic matrix. When the viscosity of the LCP dispersed phase is lower than that of the thermoplastic matrix, finely distributed fibril structure of LCP is obtained. Tensile modulus of injection molded specimens show a positive deviation from the additive rule when the viscosity ratio (ηLCPmatrix) is smaller than unity. These improvements in tensile modulus are attributed to the formation of finely distributed LCP fibrils. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Jun Chen  Peng Chen  Lichuan Wu  Jun Zhang 《Polymer》2006,47(15):5402-5410
Induced by different fillers, various hydrodynamic effects enhance the fibrillation of liquid crystalline polymer (LCP) in in situ hybrid composites. Through choosing CaCO3 whisker as the filler and polysulfone (PSF) as the matrix, the effect of the filler size and the affinity between components on the morphological evolution of LCP droplets has been investigated. In contrast to the spherical or ellipsoidal droplets of LCP formed in binary PSF/LCP blends, the fibrillation of LCP was promoted by the introduction of whisker particles in all ternary blends at shear rates studied. The analysis of the flow field indicated that the predominant factors promoting the fibrillation of LCP were the vortex enhanced and elongational stress increased by the whisker in the converging flow area at the entrance of capillary, rather than the viscosity ratio and capillary number.  相似文献   

16.
Blends of a PPO–PS alloy with a liquid crystalline polymer have been studied for their dynamic properties, rheology, mechanical properties, and morphology. This work is an extension of our previous work on PPO/LCP blends. The addition of the LCP to the PPO–PS alloy resulted in a marked reduction in the viscosity of the blends and increased processibility. The dynamic studies showed that the alloy is immiscible and incompatible with the LCP at all concentrations. The tensile properties of the blends showed a drastic increase with the increase in LCP concentration, thus indicating that the LCP acted as a reinforcing agent. The tensile strength, secant modulus, and impact strength of the PPO–PS/LCP blends were significantly higher than that of PPO/LCP blends. Morphology of the injection molded samples of the PPO–PS/LCP blends showed that the in situ formed fibrous LCP phase was preserved in the solidified form. A distinct skin–core morphology was also seen for the blends, particularly with low LCP concentrations. The improvement of the mechanical properties of the blends is attributed to these in situ fibers of LCP embedded in the PPO–PS matrix. The improvement in the properties of PPO–PS/LCP over PPO/LCP is also attributed to the addition of the PS which consolidates the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Silica is the most widely‐used filler to reinforce liquid silicone rubber (LSR), but the high viscosity of LSR/silica suspension significantly limits its processing flexibility. To balance the processibility and reinforcing efficiency of LSR/silica systems, two kinds of enols (propenol and 1‐undecylenyl alcohol) and a saturated alcohol (1‐undecylic alcohol) were employed to modify the silica surface. Various rheological tests were carried out to investigate the processibility as well as filler networking and crosslinking processes of the modified systems. Tensile tests were also adopted to verify the reinforcing effect. It was found that surface modification of silica by 1‐undecylenyl alcohol could significantly reduce the viscosity of its suspension with LSR. Meanwhile, the mechanical strength of LSR could be largely enhanced by six times with 10 wt % modified silica. This work will merit design and production of LSR materials with balanced processibility and mechanical performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45544.  相似文献   

18.
In this study, randomly oriented in situ composites based on liquid‐crystalline polymers (LCPs) were prepared by thermal compression moulding. The LCP employed was a semi‐flexible liquid‐crystalline copolyesteramide with 30 mol% of p‐aminobenzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The matrices were poly(butylene terephthalate) (PBT) and polyamide 66 (PA66). The rheological properties, compatibility and morphological structures of these in situ composites were investigated. The results showed that PA66‐LCP and PBT–LCP component pairs of the composites are miscible in the molten state, but partially compatible in the solid state. The ratios of viscosity, λ1 = ηLCPPA66 and λ2 = ηLCPPBT, are all greater than 1.0. However, the melt viscosity of the LCP/PBT and LCP/PA66 blend is much lower than that of PBT and PA66, and it decreases markedly with increasing LCP content. When the LCP/PA66 or LCP/PBT blends are compression moulded, the LCP/PA66 or LCP/PBT melts and flows easily due to their low viscosity, and the LCP phases in the melts deform easily along the flow directions, which are random. It leads to uniformly dispersed LCP micro‐fibres randomly orientation in the thermoplastic matrix due to the compatibility between the blending components. © 2003 Society of Chemical Industry  相似文献   

19.
Steady shear viscosities and dynamic moduli of polymer composites, consisting of combinations of crosslinked beads and matrices of polystyrene (PS) and polymethacrylates (PMA), are measured in a cone and plate rheometer. Viscosities and moduli were very sensitive to chemical composition. Crosslinked beads of identical composition to the matrix exhibited the lowest viscosity enhancements at low shear rates and the lowest moduli in dynamic mechanical analysis. The effects of bead concentration on rheological behavior were compared for PS and PMMA beads in a PMMA matrix. PMMA beads produce small effects, whereas PS beads yield highly non-Newtonian systems in PMMA, showing a yield stress of 1100 Pa at 30 wt% filler loading and dynamic moduli independent of frequency. We suggest that rheological behavior reflects the state of dispersion of beads in the matrix. Beads identical in composition to the matrix yield uniform dispersions. We propose that uniform and stable bead dispersions exhibit the lowest viscosity and moduli. Beads that cluster in the matrix, such as PS beads in PMMA, exhibit highly non-Newtonian behavior.  相似文献   

20.
Microfibrillar‐reinforced elastomer composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate)(rPET), and styrene‐(ethylene butylene)‐styrene (SEBS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of SEBS/LCP and SEBS/rPET blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into SEBS significantly improved the processability by bringing down the melt viscosity of the blend system. The fibrillation of LCP dispersed phase was clearly observed in as‐extruded strand with addition of LCP up to 20–30 wt %. Although the viscosity ratio of SEBS/rPET system is very low (0.03), rPET domains mostly appeared as droplets in as‐extruded strand. The results obtained from thermogravimetric analysis suggested that an addition of LCP and rPET into the elastomer matrix improved the thermal resistance significantly in air but not in nitrogen. The simultaneous DSC profiles revealed that the thermal degradation of all polymers examined were endothermic and exothermic in nitrogen and in air, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号