首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new aromatic diamines, 2,2′‐dibromo‐4,4′‐oxydianiline (DB‐ODA 4 ) and 2,2′,6,6′‐tetrabromo‐4,4′‐oxydianiline (TB‐ODA 5 ), have been synthesized by oxidation, bromination, and reduction of 4,4′‐oxydianiline (4,4′‐ODA). Novel polyimides 6a–f and 7a–f were prepared by reacting DB‐ODA ( 4 ) and TB‐ODA ( 5 ) with several dianhydrides by one‐step method, respectively. The inherent viscosities of these polyimides ranged from 0.31 to 0.99 dL/g (0.5 g/dL, in NMP at 30°C). These polyimides showed enhanced solubilities compared to those derived from 4,4′‐oxydianiline and corresponding dianhydrides. Especially, polyimides 7a , derived from rigid PMDA and TB‐ODA ( 5 ) can also be soluble in THF, DMF, DMAc, DMSO, and NMP. These polyimides also exhibited good thermal stability. Their glass transition temperatures measured by thermal mechanical analysis (TMA) ranged from 251 to 328°C. When the same dianhydrides were used, polyimides 7 containing four bromide substituents had higher glass transition temperatures than polyimides 6 containing two bromide substituents. The effects of incorporating more polarizable bromides on the refractive indices of polyimides were also investigated. The average refractive indices (nav) measured at 633 nm were from 1.6088 to 1.7072, and the in‐plane/out‐of‐plane birefringences (Δn) were from 0.0098 to 0.0445. It was found that the refractive indices are slightly higher when polyimides contain more bromides. However, this effect is not very obvious. It might be due to loose chain packing resulted from bromide substituents at the 2,2′ and 2,2′,6,6′ positions of the oxydiphenylene moieties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
Poly(2,2′‐imidazole‐5,5′‐bibenzimidazole) (PBI‐imi) was synthesized via the polycondensation between 3,3′,4,4′‐tetraaminobiphenyl and 4,5‐imidazole‐dicarboxylic acid. Effects of the reaction conditions on the intrinsic viscosity of the synthesized polymers were studied. The results show that the molecular weight of the polymers increases with increasing monomer concentration and reaction time, and then levels off. With higher reaction temperature, the molecular weight of the polymer is higher. With the additional imidazole group in the backbone, PBI‐imi shows improved phosphoric acid doping ability, as well as a little higher proton conductivity when compared with widely used poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] (PBI‐ph).Whereas, PBI‐imi and PBI‐ph have the similar chemical oxidation stability. PBI‐imi/3.0 H3PO4 composite membranes exhibit a proton conductivity as high as 10–4 S cm–1 at 150 °C under anhydrous condition. The temperature dependence of proton conductivity of acid doped PBI‐imi can be modeled by an Arrhenius equation.  相似文献   

4.
We synthesized 4,4′,5,5′‐tetranitro‐2,2′‐bi‐1H‐imidazole (TNBI), which may serve as a new energetic filler for high explosive formulations. TNBI was synthesized by treating an excess amount of sodium nitrate with 2,2′‐bi‐1H‐imidazole (BI), which was produced from glyoxal and ammonia gas. The overall synthetic yield was 32%. The synthesized TNBI was characterized by performing various chemical analyses including NMR, IR, and CHN analyses. Small scale sensitivity tests were carried out at both research institutes (ADD and ARDEC). The sensitivity results varied from ‘more sensitive than RDX’ to ‘substantially less sensitive than RDX’ according to the purity and conditions of the test samples. Based on our careful characterizations, this large variation in sensitivity was attributed to the moisture content that was present in the test samples due to a hygroscopic nature of TNBI. We also found that the hygroscopic nature of TNBI changed significantly due to the amount of impurities, especially sulfates.  相似文献   

5.
This paper describes the synthesis and characterization of several salts of 4,4′,5,5′‐tetranitro‐2,2′‐biimidazolate (N4BIM). Each of the salts were characterized chemically, thermally, morphologically, as well as with respect to destructive stimuli (impact, electrostatic discharge, friction, thermal). These salts show promise as propellant ingredient additives, and in particular, the bis‐triaminoguanidinium salt of N4BIM displays excellent burn rate and combustion behavior. Our combustion studies have shown that TAGN4BIM displays a fast burning rate and has the lowest pressure dependence exponent yet measured for a triaminoguanidinium salt.  相似文献   

6.
The diammonium ( 1 ) and bishydrazinium ( 2 ) salts of 4,4′,5,5′‐tetranitro‐2,2′‐biimidazolate (TNBI) were synthesized and their physical properties as well as predicted explosive performance characteristics are described. These dianionic salts are easily formed in good yields by reaction of TNBI with aqueous solutions of the cationic species. TNBI is synthesized from 2,2′‐biimidazole, which is ultimately synthesized by the condensation of aqueous glyoxal with ammonium acetate. The compounds were characterized by NMR spectroscopy, vibrational (FT‐IR and Raman) spectroscopy, elemental analysis, thermal analysis (DSC, VTS and calorimetry), and small scale safety testing (impact, friction, ESD). The measured densities and heats of formation are reported. The materials show promise for use in IM explosive and propellant formulations due to the combination of their calculated performances, thermal stability and insensitivity to stimuli.  相似文献   

7.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Polyfunctional molecules, 1,5‐enynes, have been achieved via a palladium(0)‐catalyzed domino coupling reaction of (Z)‐β‐bromostyrenes with norbornenes in the presence of cesium carbonate and N,N‐dimethylformamide. The process involves a double Heck‐type procedure, two‐fold C(sp2) H activation and formation of two carbon‐carbon bonds. There are possibilities of diversified transformation for the domino coupling of (Z)‐β‐bromostyrenes with norbornenes, the procedure is successfully driven to 1,5‐enynes via accurate adjustment of the reaction conditions.

  相似文献   


9.
This paper describes the combustion properties of the amino‐substituted guanidinium 4,4′,5,5′‐tetranitro‐2,2′‐biimidazolate (N4BIM) series, including the bis‐mono, di and triaminoguanidinium salts. These salts are of interest as propellant ingredient additives, and in particular, the bis‐triaminoguanidinium salt of N4BIM displays excellent burn rate and combustion behavior. Our combustion studies have shown that TAGN4‐BIM displays a fast burning rate and has the lowest pressure dependence exponent yet measured for a triaminoguanidinium salt.  相似文献   

10.
We have developed a palladium(0)‐catalyzed tandem process which involves the cross‐coupling reaction of N‐tosylhydrazones with dibromide compounds followed by a sequence of intramolecular 5‐exo‐trig, 3‐exo‐trig cyclization, ring opening, and β‐hydride elimination to produce 6‐endo‐trig cyclized products. The strategy was successfully applied for the regioselective synthesis of substituted benzo[b]naphtho[2,1‐d]thiophenes, naphtho[1,2‐b]benzofurans, and benzo[a]carbazoles in moderate to excellent yields.

  相似文献   


11.
Eight novel polyurethanes based on 2,2′‐[1,4‐phenylenebis(nitrilomethylylidene)]diphenol and 2,2′‐[4,4′‐methylene‐di‐2‐methylphenylene‐1,1′‐bis(nitrilomethylylidene)]diphenol acting as hard segments with two aromatic and two aliphatic diisocyanates (4,4′‐diphenylmethane diisocyanate, toluene 2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate) were prepared and characterized with Fourier transform infrared, UV spectrophotometry, fluorescence spectroscopy, 1H‐NMR and 13C‐NMR spectroscopy, thermogravimetric analysis, and differential thermal analysis. All the polyurethanes contained domains of semicrystalline and amorphous structures, as indicated by X‐ray diffraction. The acoustic properties and solubility parameters were calculated with the group contribution method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
We performed theoretical studies to predict the molecular structure, molecular properties, and explosive performance of 4,4′,5,5′‐tetranitro‐2,2′‐bi‐1H‐imidazole (TNBI). High levels of ab initio and density functional theories were employed to predict the molecular structure of TNBI. Predicted TNBI structure was in good agreement with that observed by X‐ray crystallography. Heat of formation in the solid phase at 298 K was predicted to be 270.3 kJ/mol. Density of TNBI was predicted to be 1.919–1.956 g/cm3 depending upon the parameter sets of group additivity method. By using these values as input data, we estimated detonation velocity and C–J pressure to be 8.69–8.80 km/s and 34.5‐36.1 GPa, respectively. Impact sensitivity of TNBI was predicted to be 33 cm.  相似文献   

13.
A variety of substituted 2,2′‐bipyridines were synthesized by a 1,2‐bis(diphenylphosphino)ethane (dppe)/cobalt chloride hexahydrate (CoCl2⋅6 H2O)/zinc‐catalyzed [2+2+2] cycloaddition reaction of diynes and nitriles, with all reactions exhibiting exclusive regioselectivity. Thus, symmetrical and unsymmetrical 1,6‐diynes and 2‐cyanopyridine reacted in the presence of 5 mol % of dppe, 5 mol % of CoCl2⋅6 H2O and 10 mol % of zinc powder to provide the corresponding 2,2′‐bipyridines. Under identical reaction conditions, 1‐(2‐pyridyl)‐1,6‐diynes and nitriles reacted smoothly with exclusive regioselectivity to produce 2,2′‐bipyridines in good yield. 2,2′‐Bipyridines were also obtained by the double [2+2+2] cycloaddition reaction of 1,6,8,13‐tetraynes with nitriles. Similarly, 2,2′:6′,2′′‐terpyridines were synthesized from 1‐(2‐pyridyl)‐1,6‐diyne and 2‐cyanopyridine. The regiochemistry observed can be explained by considering the electronic nature of cobaltacyclopentadiene intermediates and nitriles. A survey of the exclusive regiochemical trend gives reasonable credence to the synthetic potential of the present method.  相似文献   

14.
The present work provides improved recycled high molecular weight poly(ethylene terephthalate) (PET) by chain extension using 2,2′‐(1,4‐phenylene)bis(2‐oxazoline) (PBO) as the chain extender. PBO is a very reactive compound toward macromolecules containing carboxyl end groups but not hydroxyl end groups. In the case of PET, where both species are present, for even better results, phthalic anhydride (PA) was added in the initial sample, before the addition of PBO. With this technique, we succeeded in increasing the carboxyl groups by reacting PA with the hydroxyl terminals of the starting polymer. From this modification of the initial PET sample, PBO was proved an even more effective chain extender. So, starting from a recycled PET with intrinsic viscosity [η] = 0.78, which would be [η] = 0.69 after the aforementioned treatment without a chain extender or n = 19,800, we prepared a PET grade having [η] = 0.85 or n = 25,600 within about 5 min. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2206–2211, 2000  相似文献   

15.
The field of small‐molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof‐of‐concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late‐stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype‐selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2‐SORA) series to afford a potent, orally bioavailable 2‐SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5‐disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P‐glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2‐SORA clinical candidate, 5′′‐chloro‐N‐[(5,6‐dimethoxypyridin‐2‐yl)methyl]‐2,2′:5′,3′′‐terpyridine‐3′‐carboxamide (MK‐1064), in mouse, rat, dog, and rhesus sleep models.  相似文献   

16.
The first example of the synthesis of an axially chiral bis(aryldicyclohexylphosphine) dioxide via catalytic hydrogenation of the optically resolved parent bis(aryldiphenylphosphine) dioxide was reported. The procedure for the synthesis of Cy‐P‐Phos ( 4d ) has thus successfully avoided the need for an otherwise lengthy synthetic route owing to the π‐excessive nature of one of the aryl groups in the latter. The use of Cy‐P‐Phos in the Rh(I)‐catalyzed asymmetric hydrogenation of the derivatives of methyl (Z)‐2‐acetamidocinnamate gave significantly higher rates of reaction as compared to the use of the previously reported optimal ligand Xyl‐P‐Phos ( 4c ) whilst the level of enantioselectivity was essentially maintained.  相似文献   

17.
Different outcomes were generated under different conditions for the tandem reactions of N′‐(2‐alkynylbenzylidene)hydrazides with dimethyl acetylenedicarboxylate (DMAD) catalyzed by silver triflate or in the presence of electrophiles. The unexpected isoquinoline‐based azomethine ylides were obtained when the reaction was catalyzed by silver triflate or in the presence of bromine, while the fused 1,2‐dihydroisoquinolines were afforded when iodine was employed in the above tandem reactions.  相似文献   

18.
A new diamine, 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐diaminodiphenyl ether (FPAPE) was synthesized through the Suzuki coupling reaction of 2,2′‐diiodo‐4,4′‐dinitrodiphenyl ether with 3,4,5‐trifluorophenylboronic acid to produce 2,2′‐bis(3,4,5‐trifluorophenyl)‐4,4′‐dinitrodiphenyl ether (FPNPE), followed by palladium‐catalyzed hydrazine reduction of FPNPE. FPAPE was then utilized to prepare a novel class of highly fluorinated all‐aromatic poly(ether‐imide)s. The chemical structure of the resulting polymers is well confirmed by infrared and nuclear magnetic resonance spectroscopic methods. Limiting viscosity numbers of the polymer solutions at 25 °C were measured through the extrapolation of the concentrations used to zero. Mn and Mw of these polymers were about 10 000 and 25 000 g mol?1, respectively. The polymers showed a good film‐forming ability, and some characteristics of their thin films including color and flexibility were investigated qualitatively. An excellent solubility in polar organic solvents was observed. X‐ray diffraction measurements showed that the fluoro‐containing polymers have a nearly amorphous nature. The resulting polymers had Tg values higher than 340 °C and were thermally stable, with 10% weight loss temperatures being recorded above 550 °C. Based on the results obtained, FPAPE can be considered as a promising design to prepare the related high performance polymeric materials. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The curing behavior of the epoxy resin N,N,N′,N′‐tetraglycidyldiaminodiphenyl methane (TGDDM) with triglycidyl p‐aminophenol as a reactive diluent was investigated using 2,2′‐dichloro‐4,4′‐diaminodiphenylmethane (DCDDM) as the curing agent. The effect of the curing agent on the kinetics of curing, shelf‐life, and thermal stability in comparison with a TGDDM‐diaminodiphenylsulfone (DDS) system was studied. The results showed a lesser activation energy at the lower level of conversion with a broader cure exotherm for the epoxy‐DCDDM system in comparison with the epoxy‐DDS system, although the overall activation energy for the two systems was comparable. TGA studies showed more stability in the epoxy‐DCDDM system than in the epoxy‐DDS system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2097–2103, 2000  相似文献   

20.
Three series of isomeric poly(amide imide)s (series III, IV, and V) were synthesized by the direct polycondensation of 2,2′‐bis(4‐aminophenoxy)biphenyl (2,2′‐BAPB), 4,4′‐bis(4‐aminophenoxy)biphenyl (4,4′‐BAPB), or their equimolar mixture (2,2′‐BAPB/4,4′‐BAPB = 1/1) with 12 diimide diacids and with triphenyl phosphite and pyridine as condensing agents. A comparison of the physical properties of these three series was also made. The inherent viscosities of series III, IV, and V were 0.25–0.84, 0.25–1.52, and 0.43–1.30 dL g?1, respectively. Most of the series III polymers showed better solubility because of the non‐para structure, with the solubility order found to be III > V > IV. According to X‐ray diffraction patterns, the amorphous poly(amide imide)s had excellent solubility, whereas the crystalline polymers were less soluble. All the soluble polymers afforded transparent, flexible, and tough films, which had tensile strengths of 57–104 MPa, elongations at break of 3–20%, and initial moduli of 2.05–2.86 GPa. The glass‐transition temperatures (measured by differential scanning calorimetry) were highest for series IV, which contained the rigid 4,4′‐biphenyl units (254–299°C); copolymer series V ranked second (237–277°C), and series III, with crank 2,2′‐biphenyl structures, had the lowest values (227–268°C). The 10% weight‐loss temperatures (measured by thermogravimetric analysis) were close to one another, ranging from 527 to 574°C in nitrogen and from 472 to 543°C in air. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2763–2774, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号