首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to study the miscibility and phase‐separation temperatures of poly(styrene‐co‐maleic anhydride) (SMA)/poly(vinyl methyl ether) (PVME) and SMA/poly(methyl methacrylate) (PMMA) blends with differential scanning calorimetry and small‐angle light scattering techniques. We focused on the effect of SMA partial imidization with aniline on the miscibility and phase‐separation temperatures of these blends. The SMA imidization reaction led to a partially imidized styrene N‐phenyl succinimide copolymer (SMI) with a degree of conversion of 49% and a decomposition temperature higher than that of SMA by about 20°C. We observed that both SMI/PVME and SMI/PMMA blends had lower critical solution temperature behavior. The imidization of SMA increased the phase‐separation temperature of the SMA/PVME blend and decreased that of the SMA/PMMA blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

3.
In this work, ternary polymer blends based on (polyamide 6)/(poly[styrene‐co‐acrylonitrile])/(poly[styrene‐b‐{ethylene‐co‐butylene}‐b‐styrene]) (SEBS) triblock copolymer and a varying concentration of the reactive (maleic anhydride)‐grafted SEBS were prepared by using a melt‐blending process. The effects of the material parameters (composition of ternary blends and SEBS/[{maleic anhydride}‐grafted SEBS] concentration ratio) and blending sequence on the morphological and mechanical properties of ternary blends were studied. Taguchi experimental design methodology was employed to design the experiments and select the material and processing parameters for the optimized mechanical properties. Tensile properties (Young's modulus and yield stress) and impact strength were considered as the response variables. It was demonstrated that there is a meaningful relationship between the composition of blends, processing parameters, observed phase structure, and obtained mechanical properties. The mechanical tests showed that the highest impact strength was achieved as the dispersion of the rubbery phase achieved an optimum size of about 1 μm. J. VINYL ADDIT. TECHNOL., 23:329–337, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
Different hydroxyl content poly(styrene‐cop‐(hexafluoro‐2‐hydroxylisopropyl)‐α‐methylstyene) [PS(OH)‐X] copolymers were synthesized and blends with 2,2,6,6‐tetramrthyl‐piperdine‐1‐oxyl end spin‐labeled PEO [SLPEO] were prepared. The miscibility behavior of all the blends was predicted by comparing the critical miscible polymer–polymer interaction parameter (χcrit) with the polymer–polymer interaction parameter (χ). The micro heterogeneity, chain motion, and hydrogen bonding interaction of the blends were investigated by the ESR spin label method. Two spectral components with different rates of motion were observed in the ESR composite spectra of all the blends, indicating the existence of microheterogeneity at the molecular level. According to the variations of ESR spectral parameters Ta, Td, ΔT, T50G and τc, with the increasing hydroxyl content in blends, it was shown that the extent of miscibility was progressively enhanced due to the controllable hydrogen bonding interaction between the hydroxyl in PS(OH) and the ether oxygen in PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2312–2317, 2004  相似文献   

5.
The miscibility or complexation of poly(styrene‐co‐acrylic acid) containing 27 mol % of acrylic acid (SAA‐27) and poly(styrene‐coN,N‐dimethylacrylamide) containing 17 or 32 mol % of N,N‐dimethylacrylamide (SAD‐17, SAD‐32) or poly(N,N‐dimethylacrylamide) (PDMA) were investigated by different techniques. The differential scanning calorimetry (DSC) analysis showed that a single glass‐transition temperature was observed for all the mixtures prepared from tetrahydrofuran (THF) or butan‐2‐one. This is an evidence of their miscibility or complexation over the entire composition range. As the content of the basic constituent increases as within SAA‐27/SAD‐32 and SAA‐27/PDMA, higher number of specific interpolymer interactins occurred and led to the formation of interpolymer complexes in butan‐2‐one. The qualitative Fourier transform infrared (FTIR) spectroscopy study carried out for SAA‐27/SAD‐17 blends revealed that hydrogen bonding occurred between the hydroxyl groups of SAA‐27 and the carbonyl amide of SAD‐17. Quantitative analysis carried out in the 160–210°C temperature range for the SAA‐27 copolymer and its blends of different ratios using the Painter–Coleman association model led to the estimation of the equilibrium constants K2, KA and the enthalpies of hydrogen bond formation. These blends are miscible even at 180°C as confirmed from the negative values of the total free energy of mixing ΔGM over the entire blend composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1011–1024, 2007  相似文献   

6.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

7.
The molecular dynamics and miscibility of highly interacting binary polymer blends of poly(methyl methacrylate) (PMMA) and poly[styrene‐co‐(maleic anhydride)] random copolymer with 8 wt% maleic anhydride content (SMA) were investigated as a function of composition over a wide range of frequency (10?2–106 Hz) at different constant temperatures (30–160 °C). Only one common glass relaxation process (α‐process) was detected for all measured blends, and its dynamics and broadness were found to be composition dependent. The existence of only one common α‐relaxation process located at a temperature range between those of the pure polymer components indicated the miscibility of the two polymer components over the entire range of composition. The miscibility was also confirmed by measuring the glass transition temperatures of the blends, Tg, using differential scanning calorimetry. The composition dependence of Tg of the blends showed a positive deviation from the linear mixing rule and well described by the Gordon–Taylor–Kwei equation. The relaxation spectrum of the blends was resolved into α‐ and β‐relaxation processes using the Havriliake–Negami (HN) equation and ionic conductivity. The dielectric relaxation parameters obtained from HN analysis, such as broadness of relaxation processes, maximum frequency, fmax, and dielectric strength, Δ? (for the α‐ and β‐relaxation processes), were found to be blend composition dependent. The kinetics of the α‐relaxation process of the blends were well described by the Meander model, while an Arrhenius‐type equation was used to evaluate the molecular dynamics of the β‐relaxation process. Blending of PMMA and SMA was found to have a considerable effect on the kinetics and broadness of the β‐relaxation process of PMMA, indicating that the strong interaction and miscibility between the two polymer components could effectively change the local environment of each component in the blend. © 2013 Society of Chemical Industry  相似文献   

8.
The electron spin resonance (ESR) spectra of end‐group spin labelled poly(ethylene oxide) (SLPEO) using 2,2,6,6‐tetramethyl‐piperdine‐1‐oxyl nitroxide and its blends with poly(styrene‐co‐4‐vinylphenol) (STVPhs) of different hydroxyl contents were recorded over a wide temperature range. For a blend of SLPEO and pure polystyrene (PS), the ESR spectrum was composed of a single motion component, indicating that PS was immiscible with PEO. For blends composed of SLPEO and different‐hydroxyl‐content STVPhs, two spectral components with different motion rates were observed over a certain temperature range. The difference between the motion rates should be attributed to micro‐heterogeneity in the blends, with the faster rate corresponding to a nitroxide radical motion trapped in the PEO‐rich domain and the slower rate corresponding to a nitroxide radical motion trapped in the STVPh‐rich domain. Variations in the values of a number of the ESR parameters (Ta, Td and T50G) and the apparent activation energy (Ea) with hydroxyl content in the blends indicated that the miscibility of the blends increased with increasing hydrogen‐bonding density due to specific interactions between the hydroxyl groups in STVPh and the ether oxygens in PEO. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

10.
FTIR study of the hydrogen bonding interactions within blends of different ratios of poly(styrene‐co‐acrylic acid) containing 18, 27, and 32 mol% of acrylic acid (SAA) and poly(styrene‐coN,N‐dimethylacrylamide) containing 17 mol% of N,N‐dimethylacrylamide (SAD‐17) was carried out qualitatively and quantitatively in the temperature range varying from room temperature to 210°C. Two new bands characterizing these interactions appeared in the 1800–1550 cm–1 region at 1730 cm–1 and 1616 cm–1 and are attributed to “liberated” carbonyl group of the acidic copolymer and the “associated amide” carbonyl group, respectively. Equilibrium constants describing both the self‐association K2 and inter‐association KA and the enthalpy of hydrogen bonding formation in the different blends were experimentally determined using a curve fitting analysis of the infra‐red spectra as a function of temperature using the appropriate equations derived from the Painter‐Coleman association model. The obtained results confirm the miscibility of these blends in the considered temperature range from the negative values of the total free energy of mixing ΔGM. Optimization of the extent of intermolecular interactions between the two polymers in these blends is investigated. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
Thermal behaviour and morphology of blends of poly(ethylene oxide) (PEO) and poly(styrene-co-maleic anhydride) (SMA) prepared by the coprecipitation technique were studied by means of differential scanning calorimetry, optical microscopy and thermogravimetry. SMA containing 25wt% maleic anhydride (MA) was found to be miscible with PEO when the SMA content was greater than 80%. The melting temperature and crystallinity depended on the composition of the blend. SMA appears to segregate interlamellarly during the isothermal crystallization of PEO. The thermal stability of blends was enhanced and was higher than that of pure PEO and SMA. © of SCI.  相似文献   

12.
Biopolyesters poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) with an 11 mol % 4HB content [P(3HB‐co‐11%‐4HB)] and a 33 mol % 4HB content [P(3HB‐co‐33%‐4HB)] were blended by a solvent‐casting method. The thermal properties were investigated with differential scanning calorimetry. The single glass‐transition temperature of the blends revealed that the two components were miscible when the content of P(3HB‐co‐33%‐4HB) was less than 30% or more than 70 wt %. The blends, however, were immiscible when the P(3HB‐co‐33%‐4HB) content was between 30 and 70%. The miscibility of the blends was also confirmed by scanning electron microscopy morphology observation. In the crystallite structure study, X‐ray diffraction patterns demonstrated that the crystallites of the blends were mainly from poly(3‐hydroxybutyrate) units. With the addition of P(3HB‐co‐33%‐4HB), larger crystallites with lower crystallization degrees were induced. Isothermal crystallization was used to analyze the melting crystallization kinetics. The Avrami exponent was kept around 2; this indicated that the crystallization mode was not affected by the blending. The equilibrium melting temperature decreased from 144 to 140°C for the 80/20 and 70/30 blends P(3HB‐co‐11%‐4HB)/P(3HB‐co‐33%‐4HB). This hinted that the crystallization tendency decreased with a higher P(3HB‐co‐33%‐4HB) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

14.
The imidization of poly(styrene‐co‐maleic anhydride) with amines may improve some of its end‐use properties. The objective of this study was to examine the mechanism and kinetics with aniline (ANL) as an amine of the preparation of poly(styrene‐coN‐phenyl maleimide). The reaction was carried out in a tetrahydrofuran solution at 25–55°C and in an ethylbenzene solution at 85–120°C. The extent of the reaction was determined by conductance titration, a new and simple method. Two consecutive reactions were involved in the imidization: ring opening to produce an acido‐amide group and ring closing to form a corresponding imide group. The imidization rate was greatly influenced by the reaction temperature and the molar ratio of ANL to the anhydride. A model for the imidization kinetics over a wide range of reaction temperatures and concentration ranges was developed and validated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2744–2749, 2006  相似文献   

15.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

16.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

19.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

20.
Low density polyethylene (LDPE) was reacted with benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐l‐piperidinyloxy (TEMPO) to prepare a latent macroinitiator, PE–TEMPO. Little polymer was synthesized when maleic anhydride (MAH) was bulk polymerized in the presence of the PE–TEMPO. However, addition of styrene accelerated the polymerization rate and PE‐grafted‐poly(styrene‐co‐maleic anhyride) [PE‐g‐P(ST‐co‐MAH)] was produced to a high yield. Chemical reaction between MAH units and hydroxyl groups of starch was nearly undetectable in the PE/PE‐g‐P(ST‐co‐MAH)/starch blend system, and the tensile properties of the blend were not enhanced significantly. However, addition of tetrabutyl titanate (TNBT) during the blending procedure improved the tensile properties significantly through an increased interfacial adhesion between the components in the blend system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2434–2438, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号