首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a procedure for coupling general finite element models with three‐dimensional bodies modelled by the Boundary Element Method (BEM). Shells, plates and frames are modelled by the Finite Element Method (FEM) and coupled to the BEM domain directly or by means of rigid blocks. The coupling is used for the analysis of buildings connected to half‐space by means of rigid footings, piles or plates in bending and other problems where combinations of different types of sub‐domains are required, composite domains for instance. Several numerical examples are analysed to demonstrate the robustness and accuracy of the proposed scheme. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A highly efficient novel Finite Element Boundary Element Method (FEBEM) is proposed for the elasto‐viscoplastic plane‐strain analysis of displacements and stresses in infinite solids. The proposed method takes advantage of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) to achieve higher efficiency and accuracy by using the concept of elastic supports to simulate the effects of unbounded solid mass surrounding the region of interest. The BEM is used to compute the stiffnesses of elastic supports and to estimate the location of the truncation boundary for the finite element model. As compared to the conventional coupled FEBEM, the proposed method has three main computational advantages. Firstly, the symmetrical and highly banded form of the standard finite element stiffness matrix is not disturbed. Secondly, the proposed technique may be implemented simply by using standard codes for elasto‐viscoplastic finite element analysis and elastic boundary element analysis. Thirdly, the yielded zone is approximately located in advance by using the BEM and hence, an unnecessarily large extent of the domain does not have to be discretized for the finite element modelling. The efficiency and accuracy of the proposed method are demonstrated by computing elastic and elasto‐plastic displacements and stresses around ‘deep’ underground openings in rock mass subject to hydrostatic and non‐hydrostatic in situ stresses. Results obtained by the proposed method are compared with ‘exact’ solutions and with those obtained by using a BEM and a coupled FEBEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
When the different parts of a structure are modelled independently by BEM or FEM methods, it is sometimes necessary to put the parts together without remeshing of the nodes along the part interfaces. Frequently the nodes do not match along the interface. In this work, the symmetric Galerkin multi‐zone curved boundary element is a fully symmetric formulation and is the method used for the boundary element part. For BEM–FEM coupling it is then necessary to interpolate the tractions in‐between the non‐matching nodes for the FEM part. Finally, the coupling is achieved by transforming the finite element domains to equivalent boundary element domains in a block symmetric formulation. This system is then coupled with a boundary element domain with non‐matching nodes in‐between. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This paper examines the efficient integration of a Symmetric Galerkin Boundary Element Analysis (SGBEA) method with multi‐zone resulting in a fully symmetric Galerkin multi‐zone formulation. In a previous approach, a Galerkin multi‐zone method was developed where the interfacial nodes are assigned degrees of freedom globally so that the displacement and traction continuity across the zonal interfaces are addressed directly. However, the method was only block symmetric. In the present paper, two new approaches are derived. In the first approach, the degrees of freedom for a particular zone are assigned locally, independent of the other zones. The usual linear set of equations, from the symmetric Galerkin approach, are augmented with an additional set of equations generated by the Galerkin form of hypersingular boundary integrals along the interfaces. Zonal continuity is imposed externally through Lagrange's constraints. This approach is also only block symmetric. The second approach derived from the first, uses the continuity constraints at the zonal assembly level to achieve full symmetry. These methods are compared to collocation multi‐zone and an earlier formulation, on two elasticity problems from the literature. It was found that the second method is much faster than the collocation method for medium to large scale problems, primarily due to its complete symmetry. It is also observed that these methods spend marginally more time on integration than the previous Galerkin multi‐zone method but are better suited to parallel processing. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The solution of three-dimensional elastostatic problems using the Symmetric Galerkin Boundary Element Method (SGBEM) gives rise to fully populated (albeit symmetric) matrix equations, entailing high solution times for large models. This paper is concerned with the formulation and implementation of a multi-level fast multipole SGBEM (FM-SGBEM) for elastic solid with cracks. Arbitrary geometries and boundary conditions may be considered. Numerical results on test problems involving a cube, single or multiple cracks in an unbounded medium, and a cracked cylindrical solid are presented. BEM models involving up to 106 BEM unknowns are considered, and the desirable predicted trends of the elastostatic FM-SGBEM, such as a O(N) complexity per iteration, are verified.  相似文献   

6.
The Finite Element Method and the Boundary Element Method are two different structure analysis methods with a totally different numerical character. Therefore, it makes no sense to couple these two methods pointwise at the interface. In contrast to a lot of coupling strategies in the past, in this paper a method is constructed where we have coupling of the two different methods in a weak form. As a result we can analyse the given structure with two different grids independent of each other. On this account, we see that the big advantage of the proposed method is in its ablity to couple BEM and FEM. The construction of a robust and reliable numerical algorithm depends on the adaptive control of symmetry and definiteness of the coupling matrix. Therefore, we use an iterative method for solving the boundary integral equation by expanding the Calderon projector in a Neumann series. Numerical results show the preciseness and efficiency of the method. © 1997 John Willey & Sons Ltd.  相似文献   

7.
 This paper presents a symmetric collocation BEM (SCBEM)/FEM coupling procedure applicable to 2-D time domain structural–acoustic interaction problems. The use of symmetry for BEM not only saves memory storage but also enables the employment of efficient symmetric equation solvers, especially for BEM/FEM coupling procedure. Compared with symmetric Galerkin BEM (SGBEM) where double boundary integration should be carried out, SCBEM can reduce significantly the computing cost. Two numerical examples are included to illustrate the effectiveness and accuracy of the proposed method. Received: 2 November 2001 / Accepted: 27 May 2002  相似文献   

8.
In this paper an efficient three‐dimensional hybrid thermal model for the pressure die casting process is described. The Finite Element Method (FEM) is used for modelling heat transfer in the casting, and the Boundary Element Method (BEM) for the die. The FEM can efficiently account for the non‐linearity introduced by the release of latent heat on solidification, whereas the BEM is ideally suited for modelling linear heat conduction in the die, as surface temperatures are of principal importance. The FE formulation for the casting is based on the modified effective capacitance method, which provides high accuracy and unconditional stability. This is essential for accurate modelling of the pressure die casting process and efficient coupling to the BEM. The BE model caters for surface phenomena such as boiling in the cooling channels, which is important, as this effectively controls the manner in which energy is extracted. The die temperature is decomposed into two components, one a steady‐state part and the other a time‐dependent perturbation. This approach enables the transient die temperatures to be calculated in an efficient way, since only die surfaces close to the die cavity are considered in the perturbation analysis. A multiplicative Schwarz method for non‐overlapping domains is used to couple the individual die blocks and casting. The method adopted makes use of the weak coupling between the domains, which is a result of the relatively high interfacial thermal resistance that is present. Numerical experiments are performed to demonstrate the computational effectiveness of the approach. Predicted die and casting temperatures are compared with thermocouple measurements and good agreement is indicated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A meshless approach to the Boundary Element Method in which only a scattered set of points is used to approximate the solution is presented. Moving Least Square approximations are used to build a Partition of Unity on the boundary and then used to construct, at low cost, trial and test functions for Galerkin approximations. A particular case in which the Partition of Unity is described by linear boundary element meshes, as in the Generalized Finite Element Method, is then presented. This approximation technique is then applied to Galerkin boundary element formulations. Finally, some numerical accuracy and convergence solutions for potential problems are presented for the singular, hypersingular and symmetric approaches.  相似文献   

10.
The subject of this paper is dynamic analysis of Micro-Electro-Mechanical Systems (MEMS). MEMS are integrated, movable microstructures with electronics, in the 0⋅1–1000 μm size range. Dynamic analysis of MEMS is complicated by the fact that there are two physical domains, electrical and mechanical, with non-linear coupling between them. Numerical simulation of the dynamics of MEMS is carried out by a hybrid BEM/FEM (Boundary Element and Finite Element Method) approach, FEM for the structure and BEM for electrostatic analysis. Several numerical techniques are proposed for time-integration in order to obtain the non-linear dynamic response. These techniques are tested on a ‘generic’ MEMS device, a microtweezer. The Modified Newmark Method is determined to be the best approach for simulation. Various interesting non-linear phenomena are observed from the numerical simulations. Some of these non-linearities have also been observed in previous experiments with MEMS. A simple physical analogue to the microtweezer is proposed. Study of this model helps one understand some of the complex non-linear responses of the microtweezer.  相似文献   

11.
The finite element tearing and interconnecting (FETI) method is recognized as an effective domain decomposition tool to achieve scalability in the solution of partitioned second‐order elasticity problems. In the boundary element tearing and interconnecting (BETI) method, a direct extension of the FETI algorithm to the BEM, the symmetric Galerkin BEM formulation, is used to obtain symmetric system matrices, making possible to apply the same FETI conjugate gradient solver. In this work, we propose a new BETI variant labeled nsBETI that allows to couple substructures modeled with the FEM and/or non‐symmetrical BEM formulations. The method connects non‐matching BEM and FEM subdomains using localized Lagrange multipliers and solves the associated non‐symmetrical flexibility equations with a Bi‐CGstab iterative algorithm. Scalability issues of nsBETI in BEM–BEM and combined BEM–FEM coupled problems are also investigated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In the context of linear elasticity, this paper presents a way to perform hypersingular integrals arising from the symmetric Galerkin Boundary Element Method (BEM). In contrast to the existing integration techniques, the one here proposed does not need any regularization or limit processes: in fact it works directly on the final form of the hypersingular double integrals without any previous manipulation. The present method is applied to 2D linear elastic problems, using straight elements with continuous piecewise-linear displacements and piecewise-constant tractions. Numerical tests are presented for the validation of the obtained analytic results.  相似文献   

13.
In this paper, a coupled model based on finite element method (FEM), boundary element method (BEM) and scaled boundary FEM (SBFEM) (also referred to as the consistent infinitesimal finite element cell method) for dynamic response of 2D structures resting on layered soil media is presented. The SBFEM proposed by Wolf and Song (Finite‐element Modelling of Unbounded Media. Wiley: England, 1996) and BEM are used for modelling the dynamic response of the unbounded media (far‐field). The standard FEM is used for modelling the finite region (near‐field) and the structure. In SBFEM, which is a semi‐analytical technique, the radiation condition at infinity is satisfied exactly without requiring the fundamental solution. This method, also eliminates the need for the discretization of interfaces between different layers. In both SBFEM and BEM, the spatial dimension is decreased by one. The objective of the development of this coupled model is to combine advantages of above‐mentioned three numerical models to solve various soil–structure interaction (SSI) problems efficiently and effectively. These three methods are coupled (FE–BE–SBFEM) via substructuring method, and a computer programme is developed for the harmonic analyses of SSI systems. The coupled model is established in such a way that, depending upon the problem and far‐field properties, one can choose BEM and/or SBFEM in modelling related far‐field region(s). Thus, BEM and/or SBFEM can be used efficiently in modelling the far‐field. The proposed model is applied to investigate dynamic response of rigid and elastic structures resting on layered soil media. To assess the proposed SSI model, several problems existing in the literature are chosen and analysed. The results of the proposed model agree with the results presented in the literature for the chosen problems. The advantages of the model are demonstrated through these comparisons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Time-domain analysis of electromagnetic wave fields is popularly performed by the Finite Difference Time-Domain method. Then the Boundary Integral Equation Method (BEM) still has advantage comparing with FDM or FEM type scheme in open boundary problems, moving boundary problems and coupled problems of charge particle and electromagnetic fields. However, the time-domain boundary integral equation method still do not well developed, numerical instability in long time range calculations frequently appear except for special cases. In this paper, a stable scheme of the time-domain boundary integral equation method is presented and numerical example of particle accelerator wake fields is shown.  相似文献   

15.
The typical Boundary Element Method (BEM) for fourth‐order problems, like bending of thin elastic plates, is based on two coupled boundary integral equations, one strongly singular and the other hypersingular. In this paper all singular integrals are evaluated directly, extending a general method formerly proposed for second‐order problems. Actually, the direct method for the evaluation of singular integrals is completely revised and presented in an alternative way. All aspects are dealt with in detail and full generality, including the evaluation of free‐term coefficients. Numerical tests and comparisons with other regularization techniques show that the direct evaluation of singular integrals is easy to implement and leads to very accurate results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The Boundary Node Method (BNM) represents a coupling between Boundary Integral Equations (BIEs) and Moving Least Squares (MLS) approximants. The main idea here is to retain the dimensionality advantage of the former and the meshless attribute of the latter. The result is a ‘meshfree’ method that decouples the mesh and the interpolation procedures. The BNM has been applied to solve 2-D and 3-D problems in potential theory and linear elasticity. The Hypersingular Boundary Element Method (HBEM) has diverse important applications in areas such as fracture mechanics, wave scattering, error analysis and adaptivity, and to obtain a symmetric Galerkin boundary element formulation. The present work presents a coupling of Hypersingular Boundary Integral Equations (HBIEs) with MLS approximants, to produce a new meshfree method — the Hypersingular Boundary Node Method (HBNM). Numerical results from this new method, for selected 3-D problems in potential theory and in linear elasticity, are presented and discussed in this paper.  相似文献   

17.
Interpolation to boundary data and one-dimensional Overhauser parabola blending methods are used to derive Overhauser triangular elements. The elements are C1-continuous at inter-element nodes and no functional derivatives are required as nodal parameters. These efficient parametric representation elements are used to solve three-dimensional potential problems using the Boundary Element Method (BEM). Results obtained are generally as accurate as those obtained using Overhauser quadrilateral elements.  相似文献   

18.
The lower bound limit approach of the classical plasticity theory is rephrased using the Multidomain Symmetric Galerkin Boundary Element Method, under conditions of plane and initial strains, ideal plasticity and associated flow rule. The new formulation couples a multidomain procedure with nonlinear programming techniques and defines the self-equilibrium stress field by an equation involving all the substructures (bem-elements) of the discretized system. The analysis is performed in a canonical form as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented using the Karnak.sGbem code coupled with the optimization toolbox by MatLab. The numerical tests, compared with the iterative elastoplastic analysis via the Multidomain Symmetric Galerkin Boundary Element Method, developed by some of the present authors, and with the available literature, prove the computational advantages of the proposed algorithm.  相似文献   

19.
Nodal sensitivities as error estimates in computational mechanics   总被引:2,自引:0,他引:2  
Summary This paper proposes the use of special sensitivities, called nodal sensitivities, as error indicators and estimators for numerical analysis in mechanics. Nodal sensitivities are defined as rates of change of response quantities with respect to nodal positions. Direct analytical differentiation is used to obtain the sensitivities, and the infinitesimal perturbations of the nodes are forced to lie along the elements. The idea proposed here can be used in conjunction with general purpose computational methods such as the Finite Element Method (FEM), the Boundary Element Method (BEM) or the Finite Difference Method (FDM); however, the BEM is the method of choice in this paper. The performance of the error indicators is evaluated through two numerical examples in linear elasticity.  相似文献   

20.
This paper presents a new inverse analysis approach for identifying material properties and unknown geometries for multi-region problems using the Boundary Element Method (BEM). In this approach, the material properties and coordinates of an unknown region boundary are taken as the optimization variables, and the sensitivity coefficients are computed by the Complex-Variable-Differentiation Method (CVDM). Due to the use of CVDM, the sensitivity coefficients can be accurately determined in a way that is as simple to use as the Finite Difference Method (FDM) and an inverse analysis for a complex composite structure can be easily performed through a similar procedure to the direct computation. Although basic integral equations are presented for heat conduction problems, the application of the proposed algorithm to other problems, such as elastic problems, is straightforward. Two numerical examples are given to demonstrate the potential of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号