首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three‐dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high‐quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2×2 matrices do not hold for 3×3 matrices, significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equality in two dimensions of the smoothness and condition number of the Jacobian matrix objective functions does not extend to three dimensions and further, that the equality of the Oddy and condition number of the metric tensor objective functions in two dimensions also fails to extend to three dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non‐dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all‐hexahedral ‘whisker‐weaved’ meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

2.
We propose a multiobjective mesh optimization framework for mesh quality improvement and mesh untangling. Our framework combines two or more competing objective functions into a single objective function to be solved using one of various multiobjective optimization methods. Methods within our framework are able to optimize various aspects of the mesh such as the element shape, element size, associated PDE interpolation error, and number of inverted elements, but the improvement is not limited to these categories. The strength of our multiobjective mesh optimization framework lies in its ability to be extended to simultaneously optimize any aspects of the mesh and to optimize meshes with different element types. We propose the exponential sum, objective product, and equal sum multiobjective mesh optimization methods within our framework; these methods do not require articulation of preferences. However, the solutions obtained satisfy a sufficient condition of weak Pareto optimality. Experimental results show that our multiobjective mesh optimization methods are able to simultaneously optimize two or more aspects of the mesh and also are able to improve mesh qualities while eliminating inverted elements. We successfully apply our methods to real‐world applications such as hydrocephalus treatment and shape optimization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst‐quality element in the mesh. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement methods. We show that a combined optimization approach that uses both objective functions obtains the best‐quality meshes for several complex geometries. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In recent years, demand for three‐dimensional simulations has continued to grow in the field of computer‐aided engineering. Especially, in the analysis of forming processes a fully automatic and robust mesh generator is necessary for handling complex geometries used in industry. For three‐dimensional analyses, tetrahedral elements are commonly used due to the advantage in dealing with such geometries. In this study, the advancing front technique has been implemented and modified using an optimization scheme. In this optimization scheme, the distortion metric determines ‘when and where’ to smooth, and serves as an objective function. As a result, the performance of the advancing front technique is improved in terms of mesh quality generated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The centroidal Voronoi tessellation based Delaunay triangulation (CVDT) provides an optimal distribution of generating points with respect to a given density function and accordingly generates a high‐quality mesh. In this paper, we discuss algorithms for the construction of the constrained CVDT from an initial Delaunay tetrahedral mesh of a three‐dimensional domain. By establishing an appropriate relationship between the density function and the specified sizing field and applying the Lloyd's iteration, the constrained CVDT mesh is obtained as a natural global optimization of the initial mesh. Simple local operations such as edges/faces flippings are also used to further improve the CVDT mesh. Several complex meshing examples and their element quality statistics are presented to demonstrate the effectiveness and efficiency of the proposed mesh generation and optimization method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
We describe a Gauss–Seidel algorithm for optimizing a three‐dimensional unstructured grid so as to conform to a given metric. The objective function for the optimization process is based on the maximum value of an elemental residual measuring the distance of any simplex in the grid to the local target metric. We analyse different possible choices for the objective function, and we highlight their relative merits and deficiencies. Alternative strategies for conducting the optimization are compared and contrasted in terms of resulting grid quality and computational costs. Numerical simulations are used for demonstrating the features of the proposed methodology, and for studying some of its characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new metric advancing front surface mesh generation scheme is suggested. This new surface mesh generator is based on a new geometrical model employing the interpolating subdivision surface concept. The target surfaces to be meshed are represented implicitly by interpolating subdivision surfaces which allow the presence of various sharp and discontinuous features in the underlying geometrical model. While the main generation steps of the new generator are based on a robust metric surface triangulation kernel developed previously, a number of specially designed algorithms are developed in order to combine the existing metric advancing front algorithm with the new geometrical model. As a result, the application areas of the new mesh generator are largely extended and can be used to handle problems involving extensive changes in domain geometry. Numerical experience indicates that, by using the proposed mesh generation scheme, high quality surface meshes with rapid varying element size and anisotropic characteristics can be generated in a short time by using a low‐end PC. Finally, by using the pseudo‐curvature element‐size controlling metric to impose the curvature element‐size requirement in an implicit manner, the new mesh generation procedure can also generate finite element meshes with high fidelity to approximate the target surfaces accurately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Parametric and implicit methods are traditionally thought to be two irrelevant approaches in structural shape optimization. Parametric method works as a Lagrangian approach and often uses the parametric boundary representation (B‐rep) of curves/surfaces, for example, Bezier and B‐splines in combination with the conformal mesh of a finite element model, while implicit method relies upon level‐set functions, that is, implicit functions for B‐rep, and works as an Eulerian approach in combination with the fixed mesh within the scope of extended finite element method or finite cell method. The original contribution of this work is the unification of both methods. First, a new shape optimization method is proposed by combining the features of the parametric and implicit B‐reps. Shape changes of the structural boundary are governed by parametric B‐rep on the fixed mesh to maintain the merit in computer‐aided design modeling and avoid laborious remeshing. Second, analytical shape design sensitivity is formulated for the parametric B‐rep in the framework of fixed mesh of finite cell method by means of the Hamilton–Jacobi equation. Numerical examples are solved to illustrate the unified methodology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The construction of solution-adapted meshes is addressed within an optimization framework. An approximation of the second spatial derivative of the solution is used to get a suitable metric in the computational domain. A mesh quality is proposed and optimized under this metric, accounting for both the shape and the size of the elements. For this purpose, a topological and geometrical mesh improvement method of high generality is introduced. It is shown that the adaptive algorithm that results recovers optimal convergence rates in singular problems, and that it captures boundary and internal layers in convection-dominated problems. Several important implementation issues are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Accurate sizing functions are crucial for efficient generation of high‐quality meshes, but to define the sizing function is often the bottleneck in complicated mesh generation tasks because of the tedious user interaction involved. We present a novel algorithm to automatically create high‐quality sizing functions for surface mesh generation. First, the tessellation of a Computer Aided Design (CAD) model is taken as the background mesh, in which an initial sizing function is defined by considering geometrical factors and user‐specified parameters. Then, a convex nonlinear programming problem is formulated and solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying necessary gradient constraint conditions and containing a significantly reduced element number. Finally, this sizing function is applied in an advancing front mesher. With the aid of a walk‐through algorithm, an efficient sizing‐value query scheme is developed. Meshing experiments of some very complicated geometry models are presented to demonstrate that the proposed sizing‐function approach enables accurate and fully automatic surface mesh generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a method to evaluate the size quality as well as the shape quality of constrained surface meshes, the constraint being either a given metric or the geometric metric associated with the surface geometry. In the context of numerical simulations, the metric specifications are those related to the finite element method. The proposed measures allow to validate the surface meshes within a general mesh adaption scheme, the metric map being usually provided via an a posteriori error estimate. Several examples of surface meshes are proposed to illustrate the relevance of the approach. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Mesh optimization has proven to be an effective way to improve mesh quality for arbitrary Lagrangian Eulerian (ALE) simulations. To date, however, most of the focus has been on improving the geometric shape of individual elements, and these methods often do not result in smooth transitions in element size or aspect ratio across groups of elements. We present an extension to the mean ratio optimization that addresses this problem and yields smooth transitions within regions and across regions in the ALE simulation. While this method is presented in the context of ALE simulations, it is applicable to a wider set of applications that require mesh improvement, including the mesh generation process. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

14.
An extended advancing front technique (AFT) with shift operations and Riemann metric named as shifting‐AFT is presented for finite element mesh generation on 3D surfaces, especially 3D closed surfaces. Riemann metric is used to govern the size and shape of the triangles in the parametric space. The shift operators are employed to insert a floating space between real space and parametric space during the 2D parametric space mesh generation. In the previous work of closed surface mesh generation, the virtual boundaries are adopted when mapping the closed surfaces into 2D open parametric domains. However, it may cause the mesh quality‐worsening problem. In order to overcome this problem, the AFT kernel is combined with the shift operator in this paper. The shifting‐AFT can generate high‐quality meshes and guarantee convergence in both open and closed surfaces. For the shifting‐AFT, it is not necessary to introduce virtual boundaries while meshing a closed surface; hence, the boundary discretization procedure is largely simplified, and moreover, better‐shaped triangles will be generated because there are no additional interior constraints yielded by virtual boundaries. Comparing with direct methods, the shifting‐AFT avoids costly and unstable 3D geometrical computations in the real space. Some examples presented in this paper have demonstrated the advantages of shift‐AFT in 3D surface mesh generation, especially for the closed surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
论文给出了基于黎曼度量的参数曲面网格生成的改进铺砖算法。阐述了曲面自身的黎曼度量,并且运用黎曼度量计算二维参数域上单元节点的位置,从而使映射到三维物理空间的四边形网格形状良好。文中对原有铺砖法相交处理进行了改进,在运用铺砖法的同时调用UG-NX强大的二次开发库函数获取相应的信息,直接在UG-NX模型的表面生成四边形网格。算例表明,该法能在曲面上生成质量好的网格。  相似文献   

16.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A new procedure is suggested for controlling the element‐size distribution of surface meshes during automatic adaptive surface mesh generation. In order to ensure that the geometry of the surface can be accurately captured, the curvature properties of the surface are first analysed. Based on the principal curvatures and principal directions of the surface, the curvature element‐size requirement is defined in the form of a metric tensor field. This element‐size controlling metric tensor field, which can either be isotopic or anisotopic depending on the user requirement, is then employed to control the element size distribution during mesh generation. The suggested procedure is local, adaptive and can be easily used with many parametric surface mesh generators. As the proposed scheme defines the curvature element‐size requirement in an implicit manner, it can be combined with any other user defined element size specification using the standard metric intersection procedure. This eventually leads to a simple implementation procedure and a high computational efficiency. Numerical examples indicate that the new procedure can effectively control the element size of surfacemeshes in the cost of very little additional computational effort. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In the present study, a hexahedral mesh generator was developed for remeshing in three‐dimensional metal forming simulations. It is based on the master grid approach and octree‐based refinement scheme to generate uniformly sized or locally refined hexahedral mesh system. In particular, for refined hexahedral mesh generation, the modified Laplacian mesh smoothing scheme mentioned in the two‐dimensional study (Part I) was used to improve the mesh quality while also minimizing the loss of element size conditions. In order to investigate the applicability and effectiveness of the developed hexahedral mesh generator, several three‐dimensional metal forming simulations were carried out using uniformly sized hexahedral mesh systems. Also, a comparative study of indentation analyses was conducted to check the computational efficiency of locally refined hexahedral mesh systems. In particular, for specification of refinement conditions, distributions of effective strain‐rate gradient and posteriori error values based on a Z2 error estimator were used. From this study, it is construed that the developed hexahedral mesh generator can be effectively used for three‐dimensional metal forming simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In the finite element method (FEM), a mesh is used for representing the geometry of the analysis and for representing the test and trial functions by piece‐wise interpolation. Recently, analysis techniques that use structured grids have been developed to avoid the need for a conforming mesh. The boundaries of the analysis domain are represented using implicit equations while a structured grid is used to interpolate functions. Such a method for analysis using structured grids is presented here in which the analysis domain is constructed by Boolean combination of step functions. Implicit equations of the boundary are used in the construction of trial and test functions such that essential boundary conditions are guaranteed to be satisfied. Furthermore, these functions are constructed such that internal elements, through which no boundary passes, have the same stiffness matrix. This approach has been applied to solve linear elastostatic problems and the results are compared with analytical and finite element analysis solutions to show that the method gives solutions that are similar to the FEM in quality but is less computationally expensive for dense mesh/grid and avoids the need for a conforming mesh. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
An octree‐based mesh generation method is proposed to create reasonable‐quality, geometry‐adapted unstructured hexahedral meshes automatically from triangulated surface models without any sharp geometrical features. A new, easy‐to‐implement, easy‐to‐understand set of refinement templates is developed to perform local mesh refinement efficiently even for concave refinement domains without creating hanging nodes. A buffer layer is inserted on an octree core mesh to improve the mesh quality significantly. Laplacian‐like smoothing, angle‐based smoothing and local optimization‐based untangling methods are used with certain restrictions to further improve the mesh quality. Several examples are shown to demonstrate the capability of our hexahedral mesh generation method for complex geometries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号