首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The atom‐transfer radical polymerization (ATRP) of methyl methacrylate (MMA), using α,α′‐dichloroxylene as initiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst was successfully carried out under microwave irradiation (MI). The polymerization of MMA under MI showed linear first‐order rate plots, a linear increase of the number‐average molecular weight with conversion, and low polydispersities, which indicated that the ATRP of MMA was controlled. Using the same experimental conditions, the apparent rate constant (k) under MI (k = 7.6 × 10?4 s?1) was higher than that under conventional heating (k = 5.3 × 10?5 s?1). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2189–2195, 2004  相似文献   

2.
Poly(N‐vinyl 2‐pyrrolidone‐g‐citric acid) (PVP‐g‐CA) hydrogels with varying compositions were prepared from ternary mixtures of N‐vinyl 2‐pyrrolidone–citric acid–water by using 60Co γ‐rays. The effect of gel composition on the uranyl ions adsorption capacity of PVP‐g‐CA hydrogels was investigated. Uranyl adsorption capacity of these hydrogels were found to be in the range of 18–144 mg [UO]/g dry gel from the aqueous solution of uranyl nitrate and 22–156 mg [UO]/g dry gel from the aqueous solution of uranyl acetate, depending on the content of citric acid in the hydrogel, while poly(N‐vinyl 2‐pyrrolidone) hydrogel did not sorb any uranyl ion. The swelling of PVP‐g‐CA hydrogel containing 2.7 mol % CA was observed in water (1620%), in uranyl acetate solution (1450%) and in uranyl nitrate solution (1360%), as compared to 700% swelling of pure PVP hydrogels. The diffusion coefficients were varied from 12.57 up to 4.04 • 10−8 m2 s−1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1037–1043, 2000  相似文献   

3.
Poly‐electrolyte N‐vinyl 2‐pyrrolidone‐g‐tartaric acid (PVP‐g‐TA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N‐vinyl 2‐pyrrolidone/tartaric acid/water. The effect of external stimuli, such as the solution pH, ionic strength, and temperature, on uranyl adsorption by these hydrogels was investigated. Uranyl adsorption capacities of the hydrogels were determined to be 53.2–72.2 (mg UO/g dry gel) at pH 1.8, and 35.3–60.7 (mg UO/g dry gel) at pH 3.8, depending on the amount of TA in the hydrogel. The adsorption studies have shown that the temperature and the ionic strength of the swelling solution also influence uranyl ion adsorption by PVP‐g‐TA hydrogels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2219–2226, 2000  相似文献   

4.
Dynamic adsorption behaviors between Cr(VI) ion and water‐insoluble amphoteric starches was investigated. It was found that the HCrO ion predominates over the initial pH ∼ 2–4, the CrO ion predominates over the initial pH ∼ 10–12, and both ions coexist over the initial pH ∼ 6–8. The sorption process occurs in two stages: the external mass transport process occurs in the early stage and the intraparticle diffusion process occurs in the long‐term stage. The diffusion coefficient of the early stage (D1) is larger than that of the long‐term stage (D2) for the initial pH 4 and pH 10. The diffusion rate of HCrO ion is faster than that of CrO ion for both processes. The D1 and D2 values are ∼ 1.38 × 10−7–10.1 × 10−7 and ∼ 0.41 × 10−7–1.60 × 10−7 cm2 s−1, respectively. The ion diffusion rate in both processes is concentration dependent and decreases with increasing initial concentration. The diffusion rate of HCrO ion is more concentration dependent than that of CrO ion for the external mass transport process. In the intraparticle diffusion process, the concentration dependence of the diffusion rate of HCrO and CrO ions is about the same. The external mass transport and intraparticle diffusion processes are endothermic and exothermic, respectively, for the initial pH 4 and pH 10. The kd values of the external mass transport and intraparticle diffusion processes are ∼ 15.20–30.45 and ∼ −3.53 to −12.67 kJ mol−1, respectively. The diffusion rate of HCrO ion is more temperature dependent than that of CrO ion for both processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2409–2418, 1999  相似文献   

5.
The kinetics and molecular weight averages of the hyperbranched polymers formed by the alternating copolymerization of equimolar allyl methyl maleate (AMM) and N‐n‐propyl maleimide (PMI) were investigated. The yields, molecular weight averages, and polydispersity indices as well as the branching degrees of the produced copolymers increased with increasing initiator concentrations and prolonged polymerization time. The trends of the experimental molecular weights as determined by size exclusion chromatography were in good agreement with the theoretical predictions. The molecular weight distribution indices fit the curve given by Mw/Mn = 1/(1‐xD), and the molecular weights fit the curve given by Mw = 4076/(1‐xD)2, where xD was the conversion of vinyl groups. DSC studies demonstrated a nonlinear relation of Tg values to the reciprocal of molecular weight (M), and Tg values decreased with the increase of molecular weight. For the Tg values of highly branched polymers in high molecular weight range, a relation of Tg = T + k/M was obtained, where T was obtained by extrapolating to infinite molecular weight and k was a constant. T was 136°C, and k = 2.9 for this work. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1941–1947, 2005  相似文献   

6.
A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups was prepared by the copolymerization of 4‐styrenesulfonic acid sodium salts (SSS) with N‐phenylmethacrylamide (copolymer A) or p‐hydroxy‐N‐phenylmethacrylamide (copolymer B), and its properties such as solubility changes, photochemical reaction, and photoresist characteristics were studied. The copolymer containing a relatively higher amount of SSS units was soluble in water. Solubility changes of the copolymers in the various buffer solutions of pH 4 ~ 11 and in water upon irradiation were observed by the measurement of insoluble fraction. The copolymers were soluble in water before irradiation, whereas they became insoluble upon irradiation with the UV light of 254 nm. The photochemical reaction of the copolymer studied by the UV and IR absorption spectroscopies indicated that a photo‐Fries rearrangement was favored for copolymer A, whereas a photocrosslinking reaction was predominate for copolymer B. Resist properties of the copolymers were studied by measurement of the normalized thickness and by development of the micropattern. Negative tone images with a resolution of 1 μm were obtained with these materials that have a sensitivity (D) of ~ 1100 mJ/cm2 with an aqueous developing process.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1172–1180, 2002  相似文献   

7.
The cycloterpolymerizations of varying proportions of diallyldimethylammonium chloride (I) and N,N-Diallyl-N-carboethoxymethylammonium chloride (II) in the presence of sulfur dioxide afforded a series of cationic (+) polyelectrolytes (CPEs) (III) in excellent yields. CPEs, upon acidic hydrolysis of the ester functionalities of the repeating units of II, resulted in the formation of cationic/zwitterionic (+/±) polymers (IV). pH-responsive zwitterionic units of ammonioethanoate (NH+CH2CO) (having unquenched valency of nitrogen) in IV was converted to its anionic counterparts (NCH2CO) by treating with equivalent amount of NaOH to give cationic/anionic i.e., ampholytic (+/−) polymers (V) with a charge symmetry or asymmetry arising out of either excess of cationic or anionic centers. The transformations of III to IV to V have thus provided an opportunity to study the effects of the polyelectrolyte-to-polyzwitterion-to-polyampholyte transitions on the solution properties of these polymers. Basicity constants of the carboxylate group (NH+CH2CO) in IV as well as the amine group (NCH2CO) in V were found to be “apparent” and as such follow the modified Henderson–Hasselbalch equation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
A procedure to synthesize poly(methyl methacrylate)‐grafted silica microparticles was developed by using radical photopolymerization of methyl methacrylate (MMA) initiated from N,N‐diethyldithiocarbamate (DEDT) groups previously bound to the silica surface (grafting “from”). The functionalization of silica microparticles with DEDT groups was performed in two steps: introduction of chlorinated functions onto the surface of silica particles, and then nucleophilic substitution of chlorines by DEDT functions via a SN2 mechanism. The study was performed with a Kieselgel® S silica which was initially chlorinated in surface, either by direct chlorination of silanols with thionyl chloride, or by using a condensation reaction between silanols and a chlorofunctional trialkoxysilane reagent, 4‐(chloromethyl)phenyltrimethoxysilane and chloromethyltriethoxysilane, respectively. Three types of DEDT‐functionalized silica microparticles were prepared with a good control of the reactions, and then characterized by solid‐state 13C and 29Si CP/MAS NMR. Their ability to initiate MMA photopolymerization was studied. The kinetics of MMA photopolymerization was followed by HPLC and 1H‐NMR. Whatever the silica used the grafting progresses very slowly. On the other hand, the conversion of MMA in PMMA grafts is depending on the structure of the DEDT‐functionalized Kieselgel® S used. Poly(methyl methacrylate)‐grafted silica microparticles bearing high length grafts ( about 100) were synthesized. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Poly(3‐mesityl‐2‐hydroxypropyl methacrylate) (PMHPMA) was synthesized in a 1,4‐dioxane solution with 2,2′‐azobisisobutyronitrile as the initiator at 60°C. The homopolymer and its monomer were characterized with 1H‐ and 13C‐NMR, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and elemental analysis techniques. According to size exclusion chromatography analysis, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of PMHPMA were 65,864 g/mol, 215,375 g/mol, and 3.275, respectively. According to thermogravimetric analysis, the carbonaceous residue value of PMHPMA was 14% at 500°C. The values of the specific retention volume, adsorption enthalpy, sorption enthalpy, sorption free energy, sorption entropy, partial molar free energy, partial molar heat of mixing, weight fraction activity coefficient of solute probes at infinite dilution (Ω), and Flory–Huggins interaction parameter (χ) were calculated for the interactions of PMHPMA with selected alcohols and alkanes by the inverse gas chromatography method at various temperatures. According to Ω and χ, selected alcohols and alkanes were nonsolvents for PMHPMA at 423–453 K. Also, the solubility parameter of PMHPMA (δ2) was found to be 24.24 and 26.33 (J/cm3)0.5 from the slope and intercept of (δ/RT) ? χ/V1 = (2δ2/RT1 ? δ/RT at 443 K, respectively [where δ1 is the solubility parameter of the probe, V1 is the molar volume of the solute, T is the column temperature (K), and R is the universal gas constant]. The glass‐transition temperature of PMHPMA was found to be 386 and 385 K by inverse gas chromatography and differential scanning calorimetry techniques, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 101–109, 2006  相似文献   

10.
Chromate sorption on pyridine strong base anion exchangers with different functional groups (methyl, ethyl, and butyl groups), at the quaternary nitrogen atoms, was studied as a function of various initial concentrations (100–1500 mg Cr/L) and counterion type. The studied resins in the Cl?[ form have higher Cr(VI)‐retention capacities than those in the SO form. The pyridine strong base anion exchangers showed a selectivity reversal for the sulfate and chromate anions compared to that of the commercial resins. The alkyl substituent length of the quaternary nitrogen atoms exerted a substantial influence on the Cr(VI)‐retention capacity values for the resins in the Cl? form; the chromate anions preferred resins with methyl functional groups, that is, resins with a greater hydrophilic structure. For the resins in the SO form the length of the substituent at the quaternary nitrogen atom had only a negligible influence on their Cr(VI)‐retention values. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1957–1963, 2004  相似文献   

11.
Acrylate copolymers containing hydrophobic monomers (methyl methacrylate, butyl acrylate, styrene, or divinyl benzene) and hydrophilic monomer (acrylic acid) were synthesized by solution polymerization, and neutralized to form the soap‐free hydrosol. The waterborne coating was prepared from the hydrosol crosslinked by M(NH3) (M2+ was Zn2+ , Cu2+, Ni2+ or Co2+). 13C‐NMR analysis was used to identify the copolymer. The result of GPC showed that the molecular weight of the copolymer was within the range of thermosetting resin for coating. The factors affecting the crosslinking degree of the coating films were studied by DSC and gravimetric analysis. The results indicated that the appropriate crosslinking agent was Zn(NH3), and the optimum curing condition was heating at 80°C for 30 min. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 91–96, 1999  相似文献   

12.
A novel ultraviolet (UV)‐curable monomer α,ω‐dichloropolysiloxane was synthesized by the telomerization of dichlorodimethylsilane and octamethylcyclotetrasiloxane (D4). The products with very low peel strength (<0.332 N/cm) could be used as release agents in pressure‐sensitive adhesives. Moreover, the values of the dispersion component of surface energy (γ) from the films of UV‐curable prepolymers (26.40–33.75 mJ/m2) were determined and the effects of γ on the reduction of adhesion were investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2135–2139, 2002  相似文献   

13.
Poly(N‐vinyl 2‐pyrrolidone) (PVP)/acrylonitrile (AN) interpenetrating polymer networks (IPNs) were synthesized and amidoximated for the purpose of uranyl ion adsorption. The adsorption of amidoximated IPNs was studied from different uranyl ion solutions (850, 1000, 1200, 1400, and 1600 ppm). The result of all our adsorption studies showed that the bonding between UO‐amidoxime groups complied with the Langmuir‐type isotherm. The adsorption capacity was found as 0.75 g UO/g dry amidoximated IPN. In order to increase the UO ion adsorption capacity the amidoximated IPN was treated with alkali, but no significant increase could be observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2324–2329, 2001  相似文献   

14.
The adsorption of AuI complex onto acetate cellulose‐polyaniline membranes was investigated. Kinetic experiments showed a rapid adsorption of this complex, which was attributed to an ion‐exchange mechanism. Equilibrium adsorption results were represented by the Langmuir model, showing a correlation coefficient of 0.9852. Langmuir parameters K and Qm were found to be 0.2937 L mg?1 and 1.2394 mg g?1, respectively. Approximately 94% of AuI was adsorbed when a solid/liquid ratio of 40 g L?1 (grams of membrane/ liter of solution) was used. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A sulfonated polystyrene ethylene butylene polystyrene (SPSEBS)‐poly(vinyl alcohol) (PVA)‐Quaternized polystyrene ethylene butylene polystyrene (QPSEBS) bipolar membrane (BPM) was prepared by lamination method using PSEBS as the starting material, the functionalization of which was modified by sulfonation and amination while PVA was used as the intermediate layer to enhance the water splitting efficiency. The cross section view of SPSEBS‐PVA‐QPSEBS BPM was studied by SEM. Fourier transform infra‐red spectroscopy (FTIR) studies indicated that the prepared BPM contained –SO, –NR, and –C‐N functional groups. The thermal stability of the prepared BPM was studied by thermogravimetric analysis (TGA). Some of the BPM characteristics results showed that the co‐ion fluxes was greater for t(0.065) when compared with t(0.051) along with a water splitting capacity value of 0.88 for SPSEBS‐PVA‐QPSEBS BPM. The water dissociation flux was 2.8 × 10?5 mol/m2/s and 2.2 × 10?5 mol/m2/s for the acid (H+) and base (OH?), respectively. The other essential current‐voltage characteristics and permeate flux across the membrane were also evaluated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci 2013  相似文献   

16.
17.
Surface activity and micellar behavior in aqueous media in the temperature range 20–50°C of the two block copolymers, Me2N(CH2)2OE39B18, (DE40B18) and I?Me3N+(CH2)2OE39B18, (TE40B18) in the premicellar and postmicellar regions have been studied by surface tensiometry, viscometry, and densitometry. Where E represents an oxyethylene unit while B an oxybutylene unit. Various fundamental parameters such as, surface excess concentrations (Γm), area per molecule (a) at air/water interface and standard Gibbs free energy for adsorption, ΔG have been investigated for the premicellar region at several temperatures. The thermodynamic parameters of micellization such as, critical micelle concentrations, CMC, enthalpy of micellization, ΔH, standard free energy of micellization ΔG, and entropy of micellization ΔS have also been calculated from surface tension measurements. Dilute solution viscosities have been used to estimate the intrinsic viscosities, solute‐solvent interaction parameter and hydration of micelle. Partial specific volume and density of the micelle were obtained from the density measurements at various temperatures. The effect of modifying the end group of the hydrophilic block was investigated by comparing the behavior of trimethylammonium‐ and dimethylamino‐tipped copolymers, designated TE40B18, and DE40B18, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
It was determined that the thermal stability of poly(4‐methyl‐1‐pentene) (P4MP) was maintained up to 424°C in an inert atmosphere by thermogravimetric analysis. The retention diagrams of ethyl acetate, tert‐butyl acetate, and benzene on P4MP were plotted at temperatures between 30 and 280°C by inverse gas chromatography (IGC) technique. Melting temperature of the polymer was determined as 230 and 239.5°C by IGC and differential scanning calorimetry (DSC), respectively. The percent crystallinity of P4MP was obtained from the retention diagrams at temperatures below melting point. The percent crystallinity obtained by IGC is in good agreement with the ones obtained by DSC. Then, specific retention volume, V, weight fraction activity coefficient, Ω, Flory‐Huggins polymer‐solvent interaction parameter, χ, equation‐of‐state polymer‐solvent interaction parameter, χ, and effective exchange energy parameter, Xeff of octane, nonane, decane, undecane, dodecane, tridecane, n‐butyl acetate, isobutyl acetate, isoamyl acetate with P4MP, were determined between 240 and 280°C by IGC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The melt flow behavior of methyl methacrylate (MMA) copolymerized with methyl acrylate (MA) was measured and analyzed in terms of the molecular structure of the copolymers. Measurement was done by using a capillary rheometer in the shear rate range from 6 × 100 to 3 × 103 s?1 and in temperatures from 160°C to 280°C. The Newtonian flow pattern appeared in lower shear rate and higher temperature regions. However, with increasing shear rate at lower temperature, viscosity decreased to a constant slope on a logarithmic scale. The melt fracture arose at the critical shearing stress point Sc of 6 × 106 dyn/cm2. A die swell also appeared in the shear rate range larger than 1 × 106 dyn/cm2, and its maximum value was two times larger than that of the capillary diameter. The decrease in viscosity with increasing shear rate is explained in terms of the apparent energy of activation in flow E. E also decreases with increasing shear rate. The exponential relation of E to η is maintained in the higher shear rate. The lowering of viscosity in lower shear rate, however, is attributed to not only the change in E but also the change in the volume of flow unit. The melt viscosity increases in inverse proportion to the MA content in the copolymers which form more flexible chains. Syndiotactic form of MMA has increased viscosity, caused by the rigidifying of segmented chains, rather than the strengthening of intermolecular interaction.  相似文献   

20.
Poly(ethylene oxide) based electrolytes comprising LiCF3SO3 and calix[2]‐p‐benzo[4]pyrrole (CBP) as anion binder were prepared and subjected to DSC, ionic conductivity, cationic transport number and FTIR analyses. Symmetric cells of the type Li/PEO+LiCF3SO3+CBP/Li were assembled with these electrolytes and evolution of interfacial resistance as a function of time was analyzed. The cationic transference number, t, was found to increase from 0.23 to 0.78 on incorporation of CBP in the polymer electrolyte (PE). The incorporation of CBP as an anion trap does not enhance ionic conductivity below 60°C although it improves the interfacial properties. FTIR study revealed the formation of Li–C compounds on the lithium surface upon contact with the CBP added membranes. The CBP added PE was found to be optimal in terms of ionic conductivity and transport number, t, above 70°C, which were found to be higher for a system previously reported with calix[6]pyrrole. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号