首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporation of 1 wt % of triallyl isocyanurate (TAIC) significantly enhanced the radiation crosslinking of the perfluoroelastomer, poly(tetrafluoroethylene‐co‐perfluoromethylvinyl ether) (TFE/PMVE). The dose for gelation was lowered by 70% with the presence of TAIC. The additive also improved the tensile properties of TFE/PMVE both before and after crosslinking by irradiation. Higher radical yields were obtained with the presence of TAIC at 77 K, indicating the crosslinking promoter was acting as a radical trap. ESR studies showed that radiolysis of TAIC and subsequent photobleaching cleaved an allyl branch from the ring structure. Upon thermal annealing, an allyl radical on the TAIC molecule was observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 169–175, 1999  相似文献   

2.
Poly(ε‐caprolactone) (PCL), a saturated polyester, derived from ring‐opening polymerization of ε‐caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two‐step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby–Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number‐average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing. Moreover, Young's modulus and elongation at break generally decreased with an increase in BPO content, but the tensile strength first increased with BPO content up to 1.0 wt%, reached a maximum, and then decreased. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐co‐lactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was irradiated by 60Co γ‐rays (doses of 50, 100 and 200 kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one‐step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight‐loss step change. The onset degradation temperature (To) and the temperature of maximum weight‐loss rate (Tp) of control and irradiated PHBV were in line with the heating rate (°C min?1). To and TP of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that 60Co γ‐radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (Tm) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002  相似文献   

6.
Poly(vinyl pyrrolidone‐co‐vinyl acetate)‐graft‐poly(ε‐caprolactone) (PVPVAc‐g‐PCL) was synthesized by radical copolymerization of N‐vinyl‐2‐pyrrolidone (VP)/vinyl acetate (VAc) comonomer and PCL macromonomer containing a reactive 2‐hydroxyethyl methacrylate terminal. The graft copolymer was designed in order to improve the interfacial adhesiveness of an immiscible blend system composed of cellulose acetate/poly(ε‐caprolactone) (CA/PCL). Adequate selections of preparation conditions led to successful acquisition of a series of graft copolymer samples with different values of molecular weight ( ), number of grafts (n), and segmental molecular weight of PVPVAc between adjacent grafts (Mn (between grafts)). Differential scanning calorimetry measurements gave a still immiscible indication for all of the ternary blends of CA/PCL/PVPVAc‐g‐PCL (72 : 18 : 10 in weight) that were prepared by using any of the copolymer samples as a compatibilizer. However, the incorporation enabled the CA/PCL (4 : 1) blend to be easily melt‐molded to give a visually homogeneous film sheet. This compatibilizing effect was found to be drastically enhanced when PVPVAc‐g‐PCLs of higher and Mn (between grafts) and lower n were employed. Scanning electron microscopy revealed that a uniform dispersion of the respective ingredients in the ternary blends was attainable with an assurance of the mixing scale of several hundreds of nanometers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
8.
Copolymer of L ‐lactide and ε‐caprolactone [P(LLA‐CL)] (50/50) was synthesized using stannous octoate and was stored at room temperature. The change in physical properties occurring during this storage at room temperature was investigated by differential scanning calorimetry (DSC), X‐ray diffractometry, polarizing optical microscopy, tensile and bending tests, and light absorbance measurements. It was concluded that the increase in mechanical properties and light absorbance during storage can be ascribed to gradual selective crystallization of the L ‐lactide sequence in P(LLA‐CL) at room temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 947–953, 2000  相似文献   

9.
Poly(ε‐caprolactone) (PCL)/poly(amino ether) (PAE) blends were obtained by injection molding without any previous extrusion step in an attempt to (i) contribute to the knowledge of the relation between structure and mechanical properties in these type of blends composed of a rubbery and a glassy polymer and (ii) to find out to which extent are the PCL/PAE blends compatible, and therefore whether the biodegradability of PCL can be added as a characteristic of PAE‐based applications. PCL/PAE blends are composed of a crystalline PCL phase, a pure amorphous PCL phase, and a PAE‐rich phase where some PCL is present. The presence of some dissolved and probably unreacted PCL in the PAE‐rich phase led to a low interfacial tension as observed by the small size of the dispersed particles and the large interfacial area. The dependence on composition of both the modulus of elasticity and the yield stress of the blends was parallel to that of the orientation level. The elongation at break showed values similar to those of PAE in PAE‐rich blends, and was slightly synergistic in very rich PCL compositions; this behavior reflects a change in the nature of the matrix, from glassy to rubbery. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
BACKGROUND: Poly(butylene adipate‐co‐terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point. RESULTS: PBAT was treated using γ‐radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby–Pinner equation. The results showed that PBAT is a radiation‐crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby–Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (Tm) and the heat of fusion (ΔHm) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in Tm and ΔHm. The glass transition temperature of irradiated PBAT increased with increasing radiation dose. The weight loss of control and irradiated PBAT resulting from thermal degradation was a one‐step process. Moreover, the tensile strength and elongation at break decreased with an increase in radiation dose. However, the Young's modulus and stress at yield were not greatly affected by γ‐radiation. CONCLUSION: PBAT can be crosslinked using γ‐radiation. The crosslinking efficiency is relatively low. The thermal and mechanical properties of PBAT are affected by γ‐radiation. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The fullerene grafted poly(ε‐caprolactone) (PCL) was successfully synthesized with a graft efficiency of 80%. The fullerene moieties grafted onto the PCL chain aggregate into 1–2 μm particles so that a physical pseudo‐network is formed. Because of the existence of the network structure, the fullerene grafted PCL film can retain its shape at much higher temperatures than that of pure PCL film, as observed in dynamic mechanical tests. It shows a hydrophobic gelling behavior in chloroform solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The thermal degradation of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐HV)] was studied using thermogravimetry (TG). In the thermal degradation of PHB, the temperature at the onset of weight loss (To) was derived by To = 0.97B + 259, where B represents the heating rate (°C/min). The temperature at which the weight loss rate was maximum (Tp) was Tp = 1.07B + 273, and the final temperature (Tf) at which degradation was completed was Tf = 1.10B + 280. The percentage of the weight loss at temperature Tp (Cp) was 69 ± 1% whereas the percentage of the weight loss at temperature Tf (Cf) was 96 ± 1%. In the thermal degradation of P(HB‐HV) (7:3), To = 0.98B + 262, Tp = 1.00B + 278, and Tf = 1.12B + 285. The values of Cp and Cf were 62 ± 7 and 93 ± 1%, respectively. The derivative thermogravimetric (DTG) curves of PHB confirmed only one weight loss step change because the polymer mainly consisted of the HB monomer only. The DTG curves of P(HB‐HV), however, suggested multiple weight loss step changes; this was probably due to the different evaporation rates of the two monomers. The incorporation of 10 and 30 mol % of the HV component into the polyester increased the various thermal temperatures (To, Tp, andTf) by 7–12°C (measured at B = 20°C/min). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2237–2244, 2001  相似文献   

13.
A novel aliphatic polycarbonate, poly[(propylene oxide)‐co‐(carbon dioxide)‐co‐(γ‐butyrolactone)] [P(PO? CO2? GBL)], was synthesized by the copolymerization of carbon dioxide, propylene oxide (PO) and γ‐butyrolactone (GBL). The resulting copolymers were determined by FTIR and NMR spectral analysis with viscosity‐average molecular weights (Mv) from 50 000 to 120 000 g mol?1. According to elemental analysis, the calculated data of elemental contents in P(PO? CO2? GBL)44 were close to the found data. The result showed that GBL was inserted into the backbone of poly[(propylene oxide)‐co‐(carbon dioxide)] successfully. GBL offered an ester structural unit that gave the copolymer better degradability. The correlations between reaction conditions and properties were studied. When GBL content increased, the Mv and the glass transition temperature (Tg) of the copolymers improved relative to an identical copolymer without GBL. Prolonging the reaction time of the copolymerization resulted in increases in Mv and Tg. P(PO? CO2? GBL) exhibited a high Tg above 40 °C. The rate of backbone degradation increased with increasing GBL content. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

15.
Miscibility and properties of two atactic poly(methyl methacrylate)‐based blends [containing 10 and 20% of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)] have been investigated as a function of thermal treatments. Differential scanning calorimetry and dynamic mechanical thermal analysis of blends quenched in liquid nitrogen or ice/water, after annealing at T > 190 °C, showed a single glass transition temperature, indicating miscibility of the components for the time‐temperature history. Two glass transition temperatures, equal to those of the pure components, are instead found for blends after annealing at T < 190 °C. Scanning electron microscopy confirmed the homogeneity for the former quenched blends and phase separation for the latter. These results indicate the presence of an upper critical solution temperature (UCST). Tensile experiments, performed on two series of samples annealed at temperatures above and below the UCST, showed that the copolyester induces a decrease of Young's modulus and stresses at yielding and break points, and a marked increase of elongation at break. Differences in tensile properties between the two series of annealed blends are accounted for by the physical state of the components at room temperature after annealing above or below the UCST. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Biodegradable polyrotaxane‐based triblock copolymers were synthesized via the bulk atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) initiated with polypseudo‐rotaxanes (PPRs) built from a distal 2‐bromoisobutyryl end‐capped poly(ε‐caprolactone) (Br‐PCL‐Br) with α‐cyclodextrins (α‐CDs) in the presence of Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 45 ºC. The structure was characterized in detail by means of 1H NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, DSC and TGA. When the feed molar ratio of BMA to Br‐PCL‐Br was changed from 128 to 300, the degree of polymerization of PBMA blocks attached to two ends of the PPRs was in the range 382 ? 803. Although about a tenth of the added α‐CDs were still threaded onto the PCL chain after the ATRP process, the movable α‐CDs made a marked contribution to the mechanical strength enhancement, blood anticoagulation activity and protein adsorption repellency of the resulting copolymers. Meanwhile, they could also protect the copolymers from the attack of H2O and Lipase AK Amano molecules, exhibiting a lower mass loss as evidenced in hydrolytic and enzymatic degradation experiments. © 2013 Society of Chemical Industry  相似文献   

17.
18.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

19.
Star‐shaped low molecular weight poly(ε‐caprolactone)s (PCLs) were synthesized and functionalized with crosslinkable terminal groups for subsequent crosslinking. The ε‐caprolactone (CL) prepolymers were polymerized by ring‐opening in the presence of polyglycerine (PGL) as an initiator (1, 3 and 5 mol%) and Sn(II)2‐ethylhexanoate as a catalyst. Characterization of the prepolymer by 13C/1H nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) revealed a six‐armed star‐shaped structure for the prepolymer with the molecular weight controlled by the ratio of PGL and CL. Functionalization of the hydroxyl‐terminated prepolymer was carried out with maleic or itaconic anhydride. In both cases, the characterization of the functionalized prepolymer showed that the hydroxyl groups were completely substituted. The functionalized PCLs were successfully crosslinked through the reaction of double bonds. The crosslinking was induced either thermally with organic peroxide or photochemically with a photosensitive initiator. Characterization of the crosslinked PCLs by Soxhlet extraction, DSC and FTIR showed that the itaconic double bond was much more reactive in thermal crosslinking than the maleic double bond. Thus, the crosslinked prepolymers that were functionalized with itaconic double bonds achieved a gel content of about 90%. A gel content of 100% was achieved with several compositions where crosslinking agents were employed. © 2002 Society of Chemical Industry  相似文献   

20.
Poly{[α‐maleic anhydride‐ω‐methoxy‐poly(ethylene glycol)]‐co‐(ethyl cyanoacrylate)} (PEGECA) copolymers were prepared by radical polymerization of macromolecular poly(ethylene glycol) monomers (PEGylated) and ethyl 2‐cyanoacrylate in solvent. The structures of the copolymer were characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H‐NMR). The morphology and size of the PEGECA nanoparticles prepared by nanoprecipitation techniques were investigated by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS) methods. The results show that the PEGECA can self‐assemble into highly stable nanoparticles in aqueous media, and inner core and outer shell morphology. The size of the nanoparticles was strongly influenced by the solvent character and the copolymer concentration in the organic solvents. A hydrophobic drug, ibuprofen, was effectively incorporated into the nanoparticles, which provides a delivery system for ibuprofen and other hydrophobic compounds. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号