首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

2.
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料。通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料。结果表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%。为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装。组装的ASC在功率密度1710.3 W/kg下显示出25.18 W·h·kg-1的能量密度,并且能通过串联4个ASC为红色发光二极管供电。上述结果表明CaMoO4/GO电极材料在高性能储能设备的应用中具有非常大的潜力。  相似文献   

3.
为了改善Fe3O4作为锂离子电池负极材料时循环稳定性差的问题,以铁基沸石咪唑酯框架结构材料(Fe-ZIF)为前驱体,使用多巴胺通过聚合反应与其复合,再与石墨烯通过静电吸附作用组装,经过煅烧碳化,制备了Fe3O4@NC/G复合材料。研究结果表明,多巴胺与石墨烯的引入有效提高了Fe3O4在充放电过程中的电化学稳定性。在0.1 A·g-1电流密度下,充放电循环30圈,Fe3O4@NC/G的放电比容量为1005.6 mAh·g-1。当电流密度为2 A·g-1时,经过300圈循环,其放电比容量仍有838.3 mAh·g-1。Fe3O4@NC/G复合材料优异的电化学性能归因于独特的结构设计,这对其他负极材料的构筑提供了一定的参考价值。  相似文献   

4.
采用化学沉淀法制备出超级电容器用纳米MnO2电极材料,研究了热处理工艺对MnO2电容性能的影响。结果表明,产物主相为α-MnO2,粒度分布较均匀,在50~100 nm;热处理温度和时间对MnO2的电容性能有着重要影响。将在300℃热处理3 h的MnO2与活性炭电极组成非对称超级电容器,循环充放电500次,容量仅衰减2.24%;在电流密度为500 mA/g时,比电容量达302.52 F/g。  相似文献   

5.
RuO2作为一种比较优秀的电极材料,在超级电容器中具有较大应用,但RuO2电容性能受限于颗粒粒径大小以及分散性。为解决RuO2颗粒容易团聚和分散性较差的问题,以RuCl3·nH2O为前驱体,采用新型脉冲电沉积法在泡沫Ni上电沉积RuO2作为超级电容器的电极材料。并使用扫描电子显微镜、X射线衍射仪以及电化学工作站表征材料的表面微观形貌、物相组成和电化学性能。结果表明:分别电沉积15 min和30 min, RuO2在Ni上生长为一层50 nm和150 nm厚度均匀的薄膜;电化学性能测试表明其内阻较低以及充放电时间较长;电沉积15 min的P15样品在20 mV/s扫描速率下具有576 F/g的比电容,在1 A/g电流密度下具有400 F/g的比电容。因此,脉冲电沉积法制备的RuO2材料具有比较优异的性能,在超级电容器的电极材料制备中具有一定的应用前景。  相似文献   

6.
以松木作为生物模板和碳源,以Co(NO_3)_2·6H_2O作为钴源,煅烧制备多孔CoO/Co/C复合电极材料。通过X-射线衍射(XRD),扫描电子显微镜(SEM),N_2等温吸附-脱附(BET)对复合材料的结构和形貌进行表征。结果表明,复合电极材料遗传了木材模板的生物形貌特点和多级孔道结构,BET表面积为369.2 m~2/g。CoO/Co/C电极具有较好的电化学性能,在1 A/g电流密度下比电容达760 F/g,在电流密度5 A/g下循环充放电500次后,电容保持率为73.7%。  相似文献   

7.
以竹材为原料,在高温Ar保护下制备了高比表面积超级电容器用竹炭材料。用XRD和SEM对所制竹炭进行了物相分析和形貌观察;用循环伏安、恒电流充放电和交流阻抗谱研究了炭化温度对所制超级电容器性能的影响。结果表明:所得竹炭为无定形结构,随着炭化温度的升高,竹炭中石墨微晶向有序态结构发展。炭化温度为500℃时,制备的竹炭电性能最佳。在125mA/g电流密度下的首次放电比电容为226F/g;即使在500mA/g的大电流密度下,其放电比电容仍高达184F/g,第1000次循环时其放电比电容为138F/g,每次循环电容衰减仅为0.046F/g。  相似文献   

8.
过渡金属氧化物因具有丰富的氧化还原位点、高的理论容量等特性,常被用作超级电容器的电极材料。但是,单金属氧化物的导电性普遍较差,极大限制了其电化学性能。选用泡沫镍为基底,采用静电纺丝法制备出NiO纳米纤维,并通过掺杂氧化铜制备NiO-CuO双金属氧化物电极材料。实验结果表明:在2 mol/L KOH溶液中,当电流密度为0.5 A·g-1时,NiO电极的质量比电容为202.8 F·g-1,5 000次循环充放电后电容保持率仅为30.28%。同等测试条件下,NiO-CuO电极的质量比电容高达410.4 F·g-1,电容保持率为60.48%。因而,合理构建双金属氧化物作为电极材料,可充分发挥两种过渡金属的协同效应,大幅提高电极材料导电性和稳定性,进而提升电化学性能。  相似文献   

9.
通过水热法制备得到α-Ni(OH)2,在甲酰胺溶剂中,通过机械振荡结合超声对其进行剥离,得到厚度约为1.1 nm的Ni(OH)2纳米片,与氧化石墨烯(GO)悬浮液混合后,静电自组装得到Ni(OH)2/GO,经高温热处理获得NiO/还原氧化石墨烯(rGO)复合材料。同时研究了NiO/rGO的结构、形貌及其用作超级电容器电极材料的电化学性能。形貌表征显示NiO/rGO呈层-层形貌,N2吸-脱附实验表明复合材料存在介孔结构。在KOH电解液中,1 A/g电流密度下NiO/rGO的比容量为1564 F/g,远高于初始Ni(OH)2和单纯的NiO;组装的NiO/rGO//石墨烯水凝胶(GH)非对称超级电容器(ASC)器件,充放电电位窗口为0~1.6 V,10 A/g电流密度下经1000次充放电循环的比容量保持率达84.2%。  相似文献   

10.
MnFe类普鲁士蓝(MnHCF)作为超级电容器电极材料具有高比电容和优良的循环稳定性,但导电性不佳限制了其应用,通过将其与聚苯胺等高电导率材料复合可以极大改善这一问题。传统的两步制备方法工艺繁琐,干扰因素较多。本研究利用MnO_2纳米棒作原材料在室温下一步合成了聚苯胺-MnFe类普鲁士蓝复合材料(PANI-MnHCF)。利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)对样品进行物理表征,使用循环伏安法(CV)、恒电流充放电法以及交流阻抗法(EIS)对样品电化学性能进行测试。结果表明:成功合成了堆砌为规则块状结构的PANI-MnHCF。在0.5 mol/L中性Na_2SO_4电解液中,1 A/g电流密度下,比电容达276.4 F/g;电流密度增大至5 A/g后,比电容仍能保持225.2 F/g;2000次充放电循环测试后,容量保持率为70.2%。  相似文献   

11.
以普鲁士蓝(PB)作为前驱体,通过固相烧结法在氮气环境中制备FeSe2材料,结合聚吡咯(PPy)优良的导电性能,利用原位氧化聚合法包覆聚吡咯,设计出了FeSe2@PPy复合材料。在三电极体系中,以2 mol/L KOH溶液为电解液、FeSe2@PPy复合材料为工作电极、Hg/HgO电极为参比电极,FeSe2@PPy复合材料表现出了优良的电化学性能:在0.5 A·g-1电流密度下的比电容高达1 177 F·g-1。同时也测量了FeSe2@PPy复合材料电极的循环性能:在0.5 A·g-1电流密度下,经过3 000次充放电测试后比电容保持率为90.5%。电化学测试结果表明该复合材料在超级电容器应用方面具有一定的优势。  相似文献   

12.
采用溶剂热法制备了Zn-Co@ZIF前驱体,经过500℃氩气退火得到核壳结构的中间体,再经空气退火得到Zn-Co@ZIF衍生的双金属氧化物。研究了空气气氛下不同退火温度对材料结构、形貌的影响,并通过循环伏安(CV)、恒电流充放电(GCD)和电化学阻抗(EIS)的方法对电极的电化学性能进行测试。当在空气气氛下退火温度为600℃时,该电极材料晶型较好,电化学性能也较优异。随着退火温度的升高,材料的团聚增加。样品Zn-Co-600在电流密度为0.5 A/g时,电容量最高达169.5 F/g。在电流密度为1 A/g下循环1000次后的比容量保持率为86.9%,说明在低电流密度下电容的保持性较好。  相似文献   

13.
《微纳电子技术》2019,(3):195-199
共价有机框架(COF)材料是一种特殊的结晶性有机多孔材料,具有多种有机官能团结构,同时有着非常低的骨架密度以及较高的比表面积。通过熔融热法制备TpPa-COF材料并与导电性能优异的多壁碳纳米管(MWCNT)复合制得TpPa-COF@MWCNT纳米复合材料,复合材料的微观形貌通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,通过循环伏安法对用于超级电容器的TpPa-COF@MWCNT纳米复合材料的电化学性能进行研究。实验验证了该复合材料在不同扫描速度下的循环伏安曲线均呈现优异的双电层电容特性。当电流密度高达1 A·g-1时,该复合材料的比电容仍达到25 F·g-1,在2 A·g-1的电流密度下测得5 000次循环后比电容的保持率略高于100%,表现出良好的大电流充放电性能和应用前景。  相似文献   

14.
利用化学共沉淀法,制备Co Fe类普鲁士蓝纳米立方(Co Fe PBA)超级电容器电极材料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品进行物理表征;利用循环伏安法(CV)、恒电流充放电法以及交流阻抗法(EIS)对样品的电化学性能进行研究。结果表明:Co Fe PBA材料为具有面心立方结构的棱长约400 nm的立方颗粒,且表面光滑、颗粒均匀,在氯化钴和铁氰化钾摩尔比为2:1时,产物Co Fe PBA电化学性能最佳,于中性介质1 mol/L硫酸钠溶液中,在1 A/g电流密度下,比电容能达到444.4 F/g,电流密度增大至5 A/g时,比电容仍能保持在423.1 F/g,2000次充放电循环后,在1 A/g电流密度下比电容保持在439 F/g,容量衰减小于2%。  相似文献   

15.
本文通过电沉积法在泡沫镍上沉积了绿色(Co,Ni)氢氧化物前驱体,并通过退火处理制备了纳米NiCo2O4电极材料。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了生长在泡沫镍上的纳米NiCo2O4电极材料的形貌特征,成分和显微结构。通过对这些样品进行恒流密度充放电以及循环伏安测试对纳米NiCo2O4电极材料进行了电化学性能评价。结果表明,电化学性能最佳的纳米Ni Co2O4生长厚度为2.80μm,纳米片长度在390~785 nm之间,该电极材料在1 m A/cm2的充放电电流密度下比容量达到了1.4 F/cm2,在30 m A/cm2电流密度下比容量依然保持了0.68 F/cm2。该样品在5 m A/cm2的充放电电流密度下循环充放电2 000次之后依然保持了94%的初始比容量,显示出了较高的循环稳定性。  相似文献   

16.
将多组分活性材料组合成新的结构用作电极材料是提高超级电容器性能的一种有效措施。采用典型的两步水热法与电沉积法制备了FeCo2S4/Ni(OH)2复合纳米材料,并表征其物理及电化学性能。结果表明,FeCo2S4纳米花被电沉积上的Ni(OH)2纳米片包围,形成三维互连网状结构,有利于电极材料与电解液的充分接触。所得的FeCo2S4/Ni(OH)2复合电极材料显示出极高的比电容(当电流密度为1 A·g^-1时,比电容达1588.2 F·g^-1)、优异的倍率性能及循环稳定性。此外,以FeCo2S4/Ni(OH)2为正极、活性炭为负极组装了非对称超级电容器。结果显示,非对称超级电容器具有高能量密度及良好的循环稳定性。  相似文献   

17.
模板法制备超级电容器活性炭电极材料   总被引:2,自引:1,他引:1  
以硅溶胶为模板剂,酚醛树脂为炭源,采用模板法制备了超级电容器活性炭电极材料。利用SEM和BET对实验制备的活性炭进行了分析和表征。以实验研制的活性炭为电极材料,通过循环伏安和恒流充放电测试对其电容性能进行了研究。结果表明:实验研制的活性炭的比表面积为1840m2/g,在7.5×10–3A/cm2的电流密度下,其比容达到290F/g。  相似文献   

18.
以(NH4)2S2O8为氧化剂,在1 mol/L盐酸环境下化学氧化合成超级电容器用电极材料纳米聚苯胺(PANI)。在1 mol/L H2SO4溶液中考察了材料的电容性能。结果表明:在循环伏安图上出现三对氧化还原峰,分别对应聚苯胺在三种不同氧化状态间的转化以及PANI的降解。放电电流密度为(1.0,4.5,10)×10–3A/cm2时,比容量分别为654,591,525 F/g。经恒定电流10 mA充放电循环1 000次,衰减仅为初始容量的10.7%。  相似文献   

19.
采用溶剂热法制备了Zn-Co@ZIF前驱体,经过500℃氩气退火得到核壳结构的中间体,再经空气退火得到Zn-Co@ZIF衍生的双金属氧化物。研究了空气气氛下不同退火温度对材料结构、形貌的影响,并通过循环伏安(CV)、恒电流充放电(GCD)和电化学阻抗(EIS)的方法对电极的电化学性能进行测试。当在空气气氛下退火温度为600℃时,该电极材料晶型较好,电化学性能也较优异。随着退火温度的升高,材料的团聚增加。样品Zn-Co-600在电流密度为0.5 A/g时,电容量最高达169.5 F/g。在电流密度为1 A/g下循环1000次后的比容量保持率为86.9%,说明在低电流密度下电容的保持性较好。  相似文献   

20.
《微纳电子技术》2020,(2):125-129
通过水热法和浸渍煅烧法,在泡沫镍基底上成功制备Co_3O_4-ZnO复合纳米材料,通过X射线光电子能谱分析(XPS)测定材料的元素组成,通过X射线衍射(XRD)测定材料的晶格结构,通过扫描电子显微镜(SEM)对材料的表面形貌进行表征。在6 mol/L的KOH电解液中,对Co_3O_4-ZnO复合纳米材料进行循环伏安、恒流充放电、交流阻抗和循环充放电测试。结果表明,在1 A/g的电流密度下,材料的比电容为1 248.2 F/g,1 000次循环之后,比电容保留率为84.94%,本实验所制备的Co_3O_4-ZnO复合纳米材料在超级电容器电极材料应用中展现出良好的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号