首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deformation of polycarbonate (PC) impact-modified with a core–shell rubber (MBS) was examined at the microscale and nanoscale. The stress-whitened zone (SWZ) that formed ahead of a semicircular notch was sectioned and examined in an optical microscope and transmission electron microscope. At the microscale, the texture of the SWZ consisted of fine shear lines that formed when cavitation of the rubber particles relieved triaxiality and enabled the PC matrix in the SWZ to deform in shear. Examination of thin sections from the SWZ in the transmission electron microscope revealed nanoscale deformation of the rubber particles. When the particle concentration was low (2%), only random cavitation of rubber particles was observed. At higher particle concentrations (5 and 10%), cooperative cavitation produced linear arrays of cavitated particles. The matrix ligaments between cavitated particles were strong enough that they did not fracture; higher strains were accommodated by particle cavitation and matrix extension in the regions separating the arrays. The cavitated arrays were also observed in the damage zone that accompanied the fracture surface of specimens impacted at ?20°C. Cooperative cavitation may have implications for the impact strength of blends with higher concentrations of rubber particles. The possibility that particle–particle interactions facilitate cavitation and promote matrix shear deformation is especially relevant to low-temperature impact strength. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The morphology and fracture behavior of isotactic polypropylene toughened by styrene‐ethylene‐propylene (PP/SEP) were investigated. The SEP rubber, having an average particle size of 0.2 µm, is found to be well dispersed in the PP matrix. The fracture toughness of SEP‐modified PP is greatly improved. The toughening mechanism investigation shows that a widespread crazing zone is generated in the crack tip damage zone. An intense narrow damage band in the center of crazed zone is formed. Crazing and shear yielding are found to be the dominant toughening mechanisms in PP/SEP. The crazes are initiated only by large SEP particles in the blend. The small SEP particles (< 0.3 µm) can neither cavitate nor trigger crazing. As a result, large scale shear deformation is suppressed in this blend. These findings are consistent with the notion that the crack tip plane strain constraint has to be relieved in magnitude in order for the deviatoric stress to reach a critical value for widespread shear banding.  相似文献   

3.
The recent advances in the studies of the toughening methods and theories of polypropylene (PP)–elastomer blends are reviewed in the present article. Inclusions are key to toughening PP; they can play the role of agent‐induced crazing, cause shear yielding of the matrix around them, and end the propagation of cracks. The major theories interpreting the toughening mechanisms of the blends are: multiple crazing, damage competition theory, shear‐yielding theory, microvoids, and cavitation theories. The factors affecting the toughening effect are relatively complicated. Therefore, these theories have been verified only in some cases when they have been applied in relevant conditions. To achieve the objective of better toughening, it is important to improve the uniform distribution of dispersed‐phase particle size and suitable filler size, as well as improving the dispersion of the inclusions formed in the matrix; in addition the matrix materials or fillers must be functional with suitable modifier in order to enhance the interfacial adhesion or to improve the interfacial morphological structure between the filler and matrix. However, the exact toughening mechanisms for PP–rubber blends have to be studied further because of complications resulting from the crystallinity of the matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 409–417, 2000  相似文献   

4.
In recent decades, great attention has been devoted to the toughening of isotactic poly(propylene) (PP) with elastomers such as ethylene–propylene rubber (EPR). The most important reasons for this interest are the moderate cost and favorable properties of PP. This article is focused on the role of EPR in the deformation and fracture mechanism of PP/EPR blends with different volume fractions of elastomer phase. Differential scanning calorimetry (DSC), tensile tests, and microscopy techniques were used in this study. The fracture mechanism of isotactic PP toughened by EPR (PP/EPR) has also been studied by three point bending (3‐PB) and four point bending (4‐PB) tests. Rubber particle cavitation appears to be the main mechanism of microvoid formation, although some matrix/particle debonding was observed. The investigation of the toughening mechanism shows that a wide damage zone spreads in front of the pre‐crack. Optical microscopy (OM) illustrates that, in pure PP, crazing is the only fracture mechanism, and no evidence of shear yielding is found, while in PP blends craze‐like features associated with shear yielding are observed, which have been identified as high shear localized dilatational bands. This type of deformation pattern supports a model previously proposed by Lazzeri 1 to explain the interparticle distance effect on the basis of the stabilization effect on dilatational band propagation exerted by stretched rubber particles. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3767–3779, 2003  相似文献   

5.
Shear deformation and fracture behaviors in polypropylene (PP)‐based model thermoplastic polyolefins (TPOs) were investigated with the Iosipescu shear test. The shear deformation process was monitored in situ via video camera to obtain experimental shear stress–strain curves of model TPOs. Shear fracture mechanisms were studied with optical microscopy and scanning electron microscopy. Macroscopically, the cracks in neat PP propagated along the maximum shear plane, which indicated that mode‐II shear failure existed in neat PP. Microscopically, it was shown that shear fracture initiated in the form of partial, discontinuous inclined microcracks that later coalesced and formed the final continuous crack. The incorporation of rubber in PP could transform the shear fracture process into a stretching process in the shear damage zone. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3201–3214, 2001  相似文献   

6.
Polypropylene hybrid composites reinforced with short glass fiber (SGF) and toughened with styrene–ethylene butylenes–styrene (SEBS) elastomer were prepared using extrusion and injection‐molding techniques. Moreover, hybrids compatibilized with SEBS‐grafted maleic anhydride (SEBS‐g‐MA) and hybrid compatibilized with PP grafted with maleic anhydride (PP‐g‐MA) were also fabricated. The matrix of the latter hybrid was designated as mPP and consisted of 95% PP and 5% PP‐g‐MA. Tensile dilatometry was carried out to characterize the fracture mechanisms of hybrid composites. Dilatometric responses showed that the elastic deformation was the dominant deformation mechanism for the SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrids. However, cavitation deformation prevailed over shearing deformation for both hybrids at the higher strain regime. The cavitation strain resulted from the debonding of glass fibers and from the crazing of the matrix in the SGF/SEBS/PP hybrid. In contrast, the cavitation was caused by the debonding of SEBS particles from the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The use of PP‐g‐MA resulting in elastic deformation was the main mode of deformation in the low‐strain region for the SGF/SEBS/mPP and SEBS/SEBS‐g‐MA/mPP hybrids; thereafter, shearing appeared to dominate at the higher strain regime. This was attributed to the MA functional group improving the bonding between the SGF and PP. The correlation between fracture morphology and dilatometric responses also is presented in the article. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 441–451, 2003  相似文献   

7.
Mechanical properties and fracture toughness micromechanisms of copolypropylene filled with different amount of nanometric CaCO3 (5–15 wt %) were studied. J‐integral fracture toughness was incorporated to measure the effect of incorporation of nanoparticle into PP matrix. Crack‐tip damage zones and fracture surfaces were studied to investigate the effect of nanofiller content on fracture toughness micromechanisms. It was found that nanofiller acted as a nucleating agent and decreased the spherulite size of polypropylene significantly. J‐integral fracture toughness (Jc) of nanocomposites was improved dramatically. The Jc value increased up to approximately two times that of pure PP at 5 wt % of nano‐CaCO3. The fracture micromechanisms varied from rubber particles cavitation and shear yielding in pure PP to simultaneous existence of rubber particles cavitation, shear yielding, filler particles debonding, and crazing in PP/CaCO3 nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
It is well known that the dominant toughening mechanism of rubber‐modified polystyrene is multiple crazing. Some researchers have investigated polystyrene that can be modified by rubbers with dual particle sizes, leading to better mechanical properties. That is, the way to absorb energy during the deformation process is crazing and cavitation induced by rubber particles. Two types of polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber modifiers which have core‐shell structures were synthesized via an emulsion graft polymerization using redox and oil‐soluble initiators, respectively. To balance the yield strength, general‐purpose polystyrene was blended with the PB‐g‐PS modifiers, as well as commercial high‐impact polystyrene. Blends were defined as R‐bimodal and O‐bimodal corresponding to dispersed PB‐g‐PS particles formed using the redox and oil‐soluble initiators, respectively. The impact strength of R‐bimodal was improved significantly by altering the ratio of core to shell. However, little change of impact strength was observed for O‐bimodal. Transmission electron microscopy images of fracture surfaces indicated that the deformation mechanism of R‐bimodal is shear‐yielding induced by multi‐crazing. Moreover, PB‐g‐PS particles dispersed in O‐bimodal can form a ‘cluster’ structure, leading to crazing to absorb energy. Scanning electron microscopy images also showed obvious distinctness between the R‐bimodal and O‐bimodal systems due to different deformation mechanisms. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Rubber particle cavitation has been the focus of many investigations because it dramatically affects the mechanical properties of polymeric blends. In this work, the effect of rubber particle cavitation on the mechanical behavior of high‐impact polystyrene was studied. The extent of cavitation in rubber particles was varied via different thermal contraction/expansion cycles in the range of −100 to 23°C. Tensile, creep, and Charpy impact tests were conducted to evaluate the effects of the degree of cavitation on the general mechanical properties. The notch‐tip damage zone and deformation micromechanisms were also investigated by a transmitted optical microscopy technique to reveal the effects of cavitation on toughness. The results of this investigation illustrate a close relationship between the degree of rubber particle cavitation and the mechanical performance of high‐impact polystyrene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1110–1117, 2007  相似文献   

10.
Volume strain measurements of particulate filled polypropylene (PP) composites containing different glass beads and talc as filler were carried out in tension as a function of temperature and strain rate to determine the micro-mechanisms of deformation. While local cavitation mechanisms (micro-voiding, crazing, and micro-cracking) and subsequent debonding of the particles dominated as failure mechanisms at high strain rates and at room temperature, a more significant contribution of local shear yielding was observed with a reduced contribution of cavitational mechanisms at low strain rates or at 80 °C. This change in the dominating micro-mechanisms of deformation resulted in smaller volume strains during the tensile loading of the composites than for the respective neat matrix. Moreover, a novel approach is introduced for the detection of debonding using volume strain measurements, which takes into account the dilatational and deviatoric behavior of the neat matrix polymer and the composite. The results are supported by acoustic emission measurements carried out simultaneously on the same specimens.  相似文献   

11.
The fracture behavior of composite rubber particle-toughened polymethylmethacrylate has been investigated over a wide range of test speeds, encompassing impact conditions. When the entanglement density of the matrix was increased and its glass transition temperature reduced by copolymerization, there were significant increases in the crack initiation and propagation resistance of the particle-toughened materials at low to intermediate speeds. At impact speeds, on the other hand, where crazing became the dominant matrix microdeformation mechanism in all the materials investigated, the fracture response of the copolymer matrix was closer to that of the polymethylmethacrylate homopolymer, and the toughening effect of the rubber particles was no longer effective in either case. This is discussed in terms of the onset of the matrix β transition, associated with the transition from shear to crazing, and the α transition of the rubber domains, both of which occurred in the temperature range immediately below room temperature in low frequency dynamic torsion measurements.  相似文献   

12.
Mechanical properties and deformation mechanisms of polypropylene (PP)/wood fiber (WFb) composites modified with maleated polypropylene as compatibilizer and styrene-butadiene rubber (SBR) as impact modifier have been studied. The addition of maleated polypropylene to the unmodified polypropylene/wood fiber composite enhances the tensile modulus and yield stress as well as the Charpy impact strength. SBR does not cause a drop in the tensile modulus and yield strength because of the interplay between decreasing stiffness and strength by rubber modification and increasing stiffness and strength by good interfacial adhesion between the matrix and fibers. The addition of both maleated polypropylene and rubber to the polypropylene/wood fiber composite does not result in an improvement of effects based on maleated polypropylene and rubber, which includes possible synergism. The deformation mechanisms in unmodified polypropylene/wood fiber composite are matrix brittle fracture, fiber debonding and pullout. A polymeric layer around the fibers created from maleated polypropylene may undergo debonding, initiating local plasticity. Rubber particle cavitation, fiber pullout and debonding were the basic failure mechanisms of rubber-toughened polypropylene/wood fiber composite. When maleated polypropylene was added to this composite, fiber breakage and matrix plastic deformation took place. Polym. Compos. 25:521–526, 2004. © 2004 Society of Plastics Engineers.  相似文献   

13.
Vinyl esters are used widely as thermoset matrix materials for reinforced composites; however, they suffer from low‐impact resistance. Substantial enhancement of the toughness of brittle polymers may be achieved by dispersing elastomeric inclusions or rubber particles in the polymer matrix, inducing multiple crazing and shear yielding of the matrix. The main objectives of this work are morphological characterization of vinyl ester/reactive rubber systems and investigation of the mechanical and fracture behavior of these systems. Additional studies focused on rubber endcapped vinyl ester in the absence and presence of added reactive rubber. The initial compatibility of the liquid rubber with the liquid resin was studied. This is a key factor, along with cure conditions, in determination of the possible morphologies, namely, the degree of phase separation and particle size. The initial rubber/resin compatibility was found poor and all attempts to improve it by means of surfactants or ultrasonic treatment have not been successful. The flexure mechanical and fracture behavior of the cured resin/rubber systems was investigated. Three basic types of crack propagation behavior, stable, unstable, and stick‐slip, were observed. Fracture toughness of various resin/rubber systems was evaluated and was found to increase with increased content of rubbery second‐phase material. However, there is some payoff in stiffness and flexural strength of the cured resins. The addition of rubber does not affect the resin toughness at impact conditions. Analysis and interpretation of fractures morphology show that both multiple crazing and external cavitation play an important role in the fracture mechanism of the rubber modified specimens. No shear yielding is evident. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 647–657, 1999  相似文献   

14.
Fracture toughness and failure mechanisms in preformed poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) particle‐modified bismaleimide (BMI) systems are investigated. The fracture toughness of BMI can be significantly improved by incorporating preformed PPO particles without causing significant deterioration in other mechanical and thermal properties. The fracture mechanisms in BMI/PPO appear to be dominated by craze‐like damage. Further investigation of the craze‐like damage zone using transmission electron microscopy reveals that crazes are formed inside the PPO particle phase and dilatation bands, which appear to be triggered by the crazes inside the PPO particle, are formed in the BMI matrix. Particle bridging is also found to contribute to the toughening of BMI/PPO. The benefits of using preformed PPO particles to toughen BMI and other brittle thermosets for composite and adhesive applications are discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2539–2545, 1999  相似文献   

15.
C.B. Bucknall  D.R. Paul   《Polymer》2009,50(23):5539-5548
A model is proposed to explain the observed relationships between particle size and fracture resistance in high-performance blends, which typically reach maximum toughness at particle diameters of 0.2–0.4 μm. To date there has been no satisfactory explanation for the ductile–brittle (DB) transition at large particle sizes. The model is based on a recently developed criterion for craze initiation, which treats large cavitated rubber particles as craze-initiating Griffith flaws. Using this criterion in conjunction with Westergaard's equations, it is possible to map the spread from the notch tip of three deformation mechanisms: rubber particle cavitation, multiple crazing and shear yielding. Comparison of zone sizes leads to the conclusion that maximum toughness is achieved when the particles are large enough to cavitate a long way ahead of a notch or crack tip, but not so large that they initiate unstable crazes and thus reduce fracture resistance.  相似文献   

16.
The fracture surfaces and deformation micromechanisms of styrene‐co‐acrylonitrile (SAN)/polybutadiene‐g‐styrene‐co‐acrylonitrile (PB‐g‐SAN) blends with the compositions ranging from 65/35 to 0/100 were studied with a scanning electron microscopy technique. The results were compared to the essential work of fracture parameters obtained in a previous study conducted on double‐edge notched tension specimens. Different plastic damage mechanisms were observed, and they depended on the blend composition. For blends of 65/35 and 45/55, a high degree of rubber particle cavitation and multiple cracking followed by the massive shear yielding of the matrix were found to be the main source of energy dissipation during crack growth. Within this compositional range, more intense plastic damage in a larger volume of material, especially at the notched region, was observed as the concentration of the rubbery phase increased. For the 25/75 blend, the prevailing mechanism was pure shear yielding without any sign of cavitation inside the particles, and the fracture surface became relatively flat and was covered with aligned small microcracks. This sample showed the highest specific essential work (we) value among the blends examined in the previous study. For the samples containing concentrations of dispersed phase higher than 75%, the shear yielding process gradually became less important with the progressive importance of multiple crazing so that high‐magnification micrographs revealed extensive microcracking/crazing both inside and between the rubber particles, as the only active deformation micromechanism for neat PB‐g‐SAN. The variation we and specific plastic work of fracture with the PB‐g‐SAN phase content were successfully explained in terms of prevalent deformation mechanisms. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40072.  相似文献   

17.
An analysis was made on the effects of rubber particle size on the mechanical properties and deformation mechanisms of transparent polyvinyl chloride (PVC) blends containing core–shell methyl methacrylate–butadiene–styrene (MBS) impact modifiers. The critical interparticle distance was found not to be the criterion for the brittle‐ductile transition in the blends. In tensile tests, the blends with larger (100–280 nm) rubber particles exhibited intense stress‐whitening, while one blend with small (83 nm) rubber particles showed only slight stress‐whitening. These differences were due to an increase in resistance to cavitation with decreasing rubber particle size. Transmission electron microscopy studies on blends with a bimodal distribution of particle sizes showed that in the whitened zone of Izod specimens the larger rubber particles cavitated and expanded on yielding, while the smaller particles remained intact. However, Izod test results showed that small MBS rubber particles can toughen the PVC matrix very effectively, especially at low temperatures and at low rubber concentrations. The deformation mechanisms responsible for these effects were discussed. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The mechanical toughness of modified ABS (acrylonitrile–butadiene–styrene) alloys was evaluated using Izod impact, tensile, and compact tension tests. The modified ABS alloys contain 20 wt % of styrene–N‐phenylmaleimide (SMI) that is added to enhance the thermal resistance of the ABS. In this study, the effects of matrix composition, rubber/matrix adhesion, and rubber particle structure on the alloy toughness were investigated. Results from the tensile test and Izod impact test ranked the alloys in an order that is different from that given by KIi (stress intensity factor for crack initiation), measured from compact tension specimens. This is due to the difference in energy‐absorption characteristics for crack initiation and crack growth. The conclusion is supported by optical micrographs on the deformation zone size. The microdeformation behavior of the alloys was examined using transmission electron microscopy (TEM), which revealed different rubber‐toughening mechanisms between Izod and tensile specimens. The former contains numerous extensive crazes, while the latter, only a very few short crazes, except in regions within a few micrometers from the fracture surface. The dominant matrix deformation mechanism for the tensile specimens is believed to be shear deformation. Another interesting observation from the study is rubber particle cavitation, commonly observed in tensile specimens and Izod specimens with solid rubber particles; it did not occur in the Izod specimens containing salami‐type rubber particles. This is attributed to the salami structure that increased the straining rate for the rubber phase, leading to ductile–brittle transition of the rubber. The transition to brittle deformation of the rubber phase prevented rubber particle cavitation. The microscopic examination indicated that toughening mechanisms by the rubber particles can be very different among the mechanical tests, which should be taken into account for the rubber toughening of polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1543–1553, 1999  相似文献   

19.
Quasi‐static tensile, out‐of compression, in‐plane compression, three‐point‐bending and shear tests were conducted to reveal the mechanical behavior and failure mechanisms of three‐dimensional (3D) multiaxial warp‐knitted (MWK) carbon/epoxy composites. The characterization of the failure process and deformation analysis is supported by high‐speed camera system and Digital Image Correlation. The results show that tensile, bending, out‐of‐plane compression, in‐plane compression stress–strain response exhibit obvious linear elastic feature and brittle fracture characteristics, whereas the shear response exhibits a distinct nonlinear behavior and gradual damage process. Meanwhile, 3D MWK carbon/epoxy composites have good mechanical properties, which can be widely used in the fields of engineering. In addition, the failure for tension behaves as interlayer delaminating, 90/+45/−45° interface debonding and tensile breakage of 0° fibers; the damage for out‐of‐plane compression is mainly interlaminar shear dislocation together with local buckling and shear fracture of fibers; the failure pattern for in‐plane compression is 90° fiber separating along fiber/matrix interface as well as 0/+45/−45° fiber shear fracture in the shear plane. The main failure for bending is fiber/matrix interface debonding and fibers tearing on the compression surface, 0° fibers breakage on the tension surface as well as fiber layers delaminating. Although the shear behavior is characterized by a gradually growing shear matrix damage, 90/+45/−45° interface debonding, +45/−45° fibers shear fracture, and final 0° fiber compression failure. POLYM. COMPOS., 37:3486–3498, 2016. © 2015 Society of Plastics Engineers  相似文献   

20.
The Izod impact strength of poly(vinyl chloride)/methyl methacrylate/butadiene/styrene(PVC/MBS)polymer blends can be changed significantly with different levels of MBS and/or MBS particle size. The following results were obtained by investigating the fracture of PVC/MBS test specimens: (1) The dependence of the Izod impact strength of PVC/MBS blend on MBS particle size confirms a maximum around a MBS particle size of 2000 Å. When MBS particle size is smaller than 2000 Å, the Izod impact strength increases with MBS particle size, and crazing occurs mainly in this region. When MBS particle size is larger than 2000 Å, then the Izod impact strength, in contrast, decreases with increasing MBS particle size, and both crazing and shear yielding occur, mainly in this region. (2) Tensile experiments of PVC/MBS blends carried out under various conditions showed that the amount of energy absorption increases with decreasing MBS inter-particle distance and with increasing MBS particle size when crazing is the main energy absorbing mode. The MBS inter-particle distance dominates the energy absorption when shear yielding is the main energy absorbing mode. (3) Therefore, the Izod impact strength of PVC/MBS blends and the maximum around a MBS particle size of 2000 Å can be explained as follows: Below 2000 Å, the energy absorption by crazing dominates the total energy absorption, and the energy absorption by crazing increases with MBS particle size. Above 2000 Å, the energy absorption by shear yielding is dominant, and the energy absorption by shear yielding increases with decreasing inter-particle distance, that is to say, decreasing MBS particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号