首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A modified version of an exact Non‐reflecting Boundary Condition (NRBC) first derived by Grote and Keller is implemented in a finite element formulation for the scalar wave equation. The NRBC annihilate the first N wave harmonics on a spherical truncation boundary, and may be viewed as an extension of the second‐order local boundary condition derived by Bayliss and Turkel. Two alternative finite element formulations are given. In the first, the boundary operator is implemented directly as a ‘natural’ boundary condition in the weak form of the initial–boundary value problem. In the second, the operator is implemented indirectly by introducing auxiliary variables on the truncation boundary. Several versions of implicit and explicit time‐integration schemes are presented for solution of the finite element semidiscrete equations concurrently with the first‐order differential equations associated with the NRBC and an auxiliary variable. Numerical studies are performed to assess the accuracy and convergence properties of the NRBC when implemented in the finite element method. The results demonstrate that the finite element formulation of the (modified) NRBC is remarkably robust, and highly accurate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A family of radiation boundary conditions for the wave equation is derived by truncating a rational function approximation of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second‐order wave equations on the radiating surface. Several well‐established radiation boundary conditions appear as special cases, corresponding to different choices of the coefficients in the rational approximation. The relation between these choices is established, and an explicit formulation in terms of selected directions with ideal transmission is presented. A mechanical interpretation of the fictitious surface densities enables identification of suitable conditions at corners and boundaries of the radiating surface. Numerical examples illustrate excellent results with one or two fictitious layers with suitable corner and boundary conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper develops a finite element scheme to generate the spatial‐ and time‐dependent absorbing boundary conditions for unbounded elastic‐wave problems. This scheme first calculates the spatial‐ and time‐dependent wave speed over the cosine of the direction angle using the Higdon's one‐way first‐order boundary operator, and then this operator is used again along the absorbing boundary in order to simulate the behaviour of unbounded problems. Different from other methods, the estimation of the wave speed and directions is not necessary in this method, since the wave speed over the cosine of the direction angle is calculated automatically. Two‐ and three‐dimensional numerical simulations indicate that the accuracy of this scheme is acceptable if the finite element analysis is appropriately arranged. Moreover, only the displacements along absorbing boundary nodes need to be set in this method, so the standard finite element method can still be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A high‐order local transmitting boundary to model the propagation of acoustic or elastic, scalar or vector‐valued waves in unbounded domains of arbitrary geometry is proposed. It is based on an improved continued‐fraction solution of the dynamic stiffness matrix of an unbounded medium. The coefficient matrices of the continued‐fraction expansion are determined recursively from the scaled boundary finite element equation in dynamic stiffness. They are normalised using a matrix‐valued scaling factor, which is chosen such that the robustness of the numerical procedure is improved. The resulting continued‐fraction solution is suitable for systems with many DOFs. It converges over the whole frequency range with increasing order of expansion and leads to numerically more robust formulations in the frequency domain and time domain for arbitrarily high orders of approximation and large‐scale systems. Introducing auxiliary variables, the continued‐fraction solution is expressed as a system of linear equations in iω in the frequency domain. In the time domain, this corresponds to an equation of motion with symmetric, banded and frequency‐independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable in the frequency and time domains. Analytical and numerical examples demonstrate the superiority of the proposed method to an existing approach and its suitability for time‐domain simulations of large‐scale systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A high‐order local transmitting boundary is developed to model the propagation of elastic waves in unbounded domains. This transmitting boundary is applicable to scalar and vector waves, to unbounded domains of arbitrary geometry and to anisotropic materials. The formulation is based on a continued‐fraction solution of the dynamic‐stiffness matrix of an unbounded domain. The coefficient matrices of the continued fraction are determined recursively from the scaled boundary finite element equation in dynamic stiffness. The solution converges rapidly over the whole frequency range as the order of the continued fraction increases. Using the continued‐fraction solution and introducing auxiliary variables, a high‐order local transmitting boundary is formulated as an equation of motion with symmetric and frequency‐independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable for evaluating the response in the frequency and time domains. Analytical and numerical examples demonstrate the high rate of convergence and efficiency of this high‐order local transmitting boundary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A boundary condition satisfying the radiation condition at infinity is frequently required in the numerical simulation of wave propagation in an unbounded domain. In a frequency domain analysis using finite elements, this boundary condition can be represented by the dynamic stiffness matrix of the unbounded domain defined on its boundary. A method for determining a Padé series of the dynamic stiffness matrix is proposed in this paper. This method starts from the scaled boundary finite‐element equation, which is a system of ordinary differential equations obtained by discretizing the boundary only. The coefficients of the Padé series are obtained directly from the ordinary differential equations, which are not actually solved for the dynamic stiffness matrix. The high rate of convergence of the Padé series with increasing order is demonstrated numerically. This technique is applicable to scalar waves and elastic vector waves propagating in anisotropic unbounded domains of irregular geometry. It can be combined seamlessly with standard finite elements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Continued fraction absorbing boundary conditions (CFABCs) are highly effective boundary conditions for modelling wave absorption into unbounded domains. They are based on rational approximation of the exact dispersion relationship and were originally developed for straight computational boundaries. In this paper, CFABCs are extended to the more general case of polygonal computational domains. The key to the current development is the surprising link found between the CFABCs and the complex co‐ordinate stretching of perfectly matched layers (PMLs). This link facilitates the extension of CFABCs to oblique corners and, thus, to polygonal domains. It is shown that the proposed CFABCs are easy to implement, expected to perform better than PMLs, and are effective for general polygonal computational domains. In addition to the derivation of CFABCs, a novel explicit time‐stepping scheme is developed for efficient numerical implementation. Numerical examples presented in the paper illustrate that effective absorption is attained with a negligible increase in the computational cost for the interior domain. Although this paper focuses on wave propagation, its theoretical development can be easily extended to the more general class of problems where the governing differential equation is second order in space with constant coefficients. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A new finite element scheme is proposed for the numerical solution of time‐harmonic wave scattering problems in unbounded domains. The infinite domain in truncated via an artificial boundary ?? which encloses a finite computational domain Ω. On ?? a local high‐order non‐reflecting boundary condition (NRBC) is applied which is constructed to be optimal in a certain sense. This NRBC is implemented in a special way, by using auxiliary variables along the boundary ??, so that it involves no high‐order derivatives regardless of its order. The order of the scheme is simply an input parameter, and it may be arbitrarily high. This leads to a symmetric finite element formulation where standard C0 finite elements are used in Ω. The performance of the method is demonstrated via numerical examples, and it is compared to other NRBC‐based schemes. The method is shown to be highly accurate and stable, and to lead to a well‐conditioned matrix problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A D‐BEM approach, based on time‐weighting residuals, is developed for the solution of two‐dimensional scalar wave propagation problems. The modified basic equation of the D‐BEM formulation is generated by weighting, with respect to time, the basic D‐BEM equation, under the assumption of linear and cubic time variation for the potential and for the flux. A constant time‐weighting function is adopted. The time integration reduces the order of the time‐derivative that appears in the domain integral; as a consequence, the initial conditions are directly taken into account. An assessment of the potentialities of the proposed formulation is provided by the examples included at the end of the work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The numerical analysis of elastic wave propagation in unbounded media may be difficult due to spurious waves reflected at the model artificial boundaries. This point is critical for the analysis of wave propagation in heterogeneous or layered solids. Various techniques such as Absorbing Boundary Conditions, infinite elements or Absorbing Boundary Layers (e.g. Perfectly Matched Layers) lead to an important reduction of such spurious reflections. In this paper, a simple absorbing layer method is proposed: it is based on a Rayleigh/Caughey damping formulation which is often already available in existing Finite Element softwares. The principle of the Caughey Absorbing Layer Method is first presented (including a rheological interpretation). The efficiency of the method is then shown through 1D Finite Element simulations considering homogeneous and heterogeneous damping in the absorbing layer. 2D models are considered afterwards to assess the efficiency of the absorbing layer method for various wave types and incidences. A comparison with the PML method is first performed for pure P‐waves and the method is shown to be reliable in a more complex 2D case involving various wave types and incidences. It may thus be used for various types of problems involving elastic waves (e.g. machine vibrations, seismic waves, etc.). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Based on properties of the Helmholtz equation, we derive a new equation for an auxiliary variable. This reduces much of the oscillations of the solution leading to more accurate numerical approximations to the original unknown. Computations confirm the improved accuracy of the new models in both two and three dimensions. This also improves the accuracy when one wants the solution at neighbouring wavenumbers by using an expansion in k. We examine the accuracy for both waveguide and scattering problems as a function of k, h and the forcing mode l. The use of local absorbing boundary conditions is also examined as well as the location of the outer surface as functions of k. Connections with parabolic approximations are analysed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Recently developed non‐reflecting boundary conditions are applied for exterior time‐dependent wave problems in unbounded domains. The linear time‐dependent wave equation, with or without a dispersive term, is considered in an infinite domain. The infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC) is imposed on ??. Then the problem is solved numerically in the finite domain bounded by ??. The new boundary scheme is based on a reformulation of the sequence of NRBCs proposed by Higdon. We consider here two reformulations: one that involves high‐order derivatives with a special discretization scheme, and another that does not involve any high derivatives beyond second order. The latter formulation is made possible by introducing special auxiliary variables on ??. In both formulations the new NRBCs can easily be used up to any desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is used. In contrast to previous papers using similar formulations, here the method is applied to a fully exterior two‐dimensional problem, with a rectangular boundary. Numerical examples in infinite domains are used to demonstrate the performance and advantages of the new method. In the auxiliary‐variable formulation long‐time corner instability is observed, that requires special treatment of the corners (not addressed in this paper). No such difficulties arise in the high‐derivative formulation. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

13.
In this paper a new technique is introduced and applied in solving one‐dimensional linear and non‐linear wave‐type equations on an unbounded spatial domain. This new technique referred to as the non‐reflecting layer method (NRLM) extends the computational domain with an artificial layer on which a one‐way wave equation is solved. The method will be applied to compute stress waves in long rods consisting of NiTi shape memory alloy material subjected to impact loading and undergoing detwinning and pseudo‐elastic material responses. The NRLM has been tested on model problems and it has been found that the computed solutions agree well with the exact solutions, i.e. normalized error levels are in ranges acceptable for engineering computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A new finite element (FE) scheme is proposed for the solution of time‐dependent semi‐infinite wave‐guide problems, in dispersive or non‐dispersive media. The semi‐infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC), based on the Higdon non‐reflecting operators, is developed and applied on ??. The new NRBC does not involve any high derivatives beyond second order, but its order of accuracy is as high as one desires. It involves some parameters which are chosen automatically as a pre‐process. A C0 semi‐discrete FE formulation incorporating this NRBC is constructed for the problem in the finite domain bounded by ??. Augmented and split versions of this FE formulation are proposed. The semi‐discrete system of equations is solved by the Newmark time‐integration scheme. Numerical examples concerning dispersive waves in a semi‐infinite wave guide are used to demonstrate the performance of the new method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
An iterative procedure is described for the finite-element solution of scalar scattering problems in unbounded domains. The scattering objects may have multiple connectivity, may be of different materials or with different boundary conditions. A fictitious boundary enclosing all the objects involved is introduced. An appropriate Robin (mixed) condition is initially guessed on this boundary and is iteratively improved making use of Green's formula. It will be seen that the best choice for the Robin boundary condition is an absorbing-like one. A theorem about the theoretical convergence of the procedure is demonstrated. An analytical study of the special case of a circular cylindrical scatterer is made. Comparisons are made with other methods. Some numerical examples are provided in order to illustrate and validate the procedure and to show its applicability whatever the frequency of the incident wave. Although particular emphasis is laid in the paper on electromagnetic problems, the procedure is fully applicable to other kinds of physical phenomena such as acoustic ones. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
The perfectly matched layer (PML) technique has demonstrated very high efficiency as absorbing boundary condition for the elastic wave equation recast as a first‐order system in velocity and stress in attenuating non‐grazing bulk and surface waves. This paper develops a novel convolutional PML formulation based on the second‐order wave equation with displacements as the only unknowns to annihilate spurious reflections from near‐grazing waves. The derived variational form allows for the use of e.g. finite element and the spectral element methods as spatial discretization schemes. A recursive convolution update scheme of second‐order accuracy is employed such that highly stable, effective time integration with the Newmark‐beta (implicit and explicit with mass lumping) method is achieved. The implementation requires minor modifications of existing displacement‐based finite element software, and the stability and efficiency of the proposed formulation is verified by relevant two‐dimensional benchmarks that accommodate bulk and surface waves. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an exact non‐reflecting boundary condition for dealing with transient scalar wave propagation problems in a two‐dimensional infinite homogeneous layer. In order to model the complicated geometry and material properties in the near field, two vertical artificial boundaries are considered in the infinite layer so as to truncate the infinite domain into a finite domain. This treatment requires the appropriate boundary conditions, which are often referred to as the artificial boundary conditions, to be applied on the truncated boundaries. Since the infinite extension direction is different for these two truncated vertical boundaries, namely one extends toward x →∞ and another extends toward x→‐ ∞, the non‐reflecting boundary condition needs to be derived on these two boundaries. Applying the variable separation method to the wave equation results in a reduction in spatial variables by one. The reduced wave equation, which is a time‐dependent partial differential equation with only one spatial variable, can be further changed into a linear first‐order ordinary differential equation by using both the operator splitting method and the modal radiation function concept simultaneously. As a result, the non‐reflecting artificial boundary condition can be obtained by solving the ordinary differential equation whose stability is ensured. Some numerical examples have demonstrated that the non‐reflecting boundary condition is of high accuracy in dealing with scalar wave propagation problems in infinite and semi‐infinite media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes a family of axisymmetric, spheroidal ‘wave envelope’ elements for modelling exterior wave problems. They are of variable radial order and can be used to represent steady and transient wave fields. The formulation is presented for the axisymmetric case using elements which are based on oblate and prolate spheroidal geometries. These offer the prospect of reduced dimensionality—in comparison to conventional, spherically formulated elements—when used to represent wave fields in the vicinity of slender or flat objects. Conjugated weighting functions are used to give frequency-independent acoustic ‘mass’, ‘stiffness’ and ‘damping’ matrices. This facilitates a simple extension of the method to transient problems. The effectiveness and accuracy of the method is demonstrated by a comparison of computed and analytic solutions for sound fields generated by a rigid sphere in steady harmonic oscillation, by a rigid sphere excited from rest, and by a circular plate vibrating in a plane baffle. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper the numerical solution for ideal irrotational incompressible flow around axisymmetric 3D obstacles is discussed with the artificial boundary method. By introducing an artificial boundary, we divide the exterior unbounded domain into a bounded part and an unbounded part. After setting up a proper artificial boundary condition, we get an approximate reduced problem defined on the bounded part. Both non‐local and local artificial boundary conditions are designed. Numerical experiment is also presented, and its result demonstrates the effectiveness of these artificial boundary conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This work is concerned with the development of a D-BEM approach to the solution of 2D scalar wave propagation problems. The time-marching process can be accomplished with the use of the Houbolt method, as usual, or with the use of the Newmark method. Special attention was devoted to the development of a procedure that allows for the computation of the initial conditions contributions. In order to verify the applicability of the Newmark method and also the correctness of the expressions concerned with the computation of the initial conditions contributions, four examples are presented and the D-BEM results are compared with the corresponding analytical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号