首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present contribution we propose an optimal low‐order versatile partial hybrid stress solid‐shell element that can be readily employed for a wide range of geometrically linear elastic structural analyses, that is, from shell‐like isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and only a few internal parameters that provide the locking‐free behavior and accurate interlaminar shear stress resolution through the element thickness. These elements can be stacked on top of each other to model multilayer composite structures, fulfilling the interlaminar shear stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of composite laminates. The element formulation is based on the modified form of the well‐known Fraeijs de Veubeke–Hu–Washizu multifield variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar shear stress field in multilayer structures, which is achieved by the introduction of the assumed interlaminar shear stress field in a standard enhanced assumed strains formulation based on the Fraeijs de Veubeke–Hu–Washizu principle. The numerical testing of the present formulation, employing a variety of popular numerical benchmark examples related to element patch test, convergence, mesh distortion, shell and laminated composite analyses, proves its accuracy for a wide range of structural analyses.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Concerning composites plate theories and FEM (Finite Element Method) applications this paper presents some multilayered plate elements which meet computational requirements and include both the zig-zag distribution along the thickness co-ordinate of the in-plane displacements and the interlaminar continuity (equilibrium) for the transverse shear stresses. This is viewed as the extension to multilayered structures of well-known C0 Reissner–Mindlin finite plate elements. Two different fields along the plate thickness co-ordinate are assumed for the transverse shear stresses and for the displacements, respectively. In order to eliminate stress unknowns, reference is made to a Reissner mixed variational theorem. Sample tests have shown that the proposed elements, named RMZC, numerically work as the standard Reissner–Mindlin ones. Furthermore, comparisons with other results related to available higher-order shear deformation theories and to three-dimensional solutions have demonstrated the good performance of the RMZC elements.  相似文献   

4.
《Composites Part B》2000,31(1):65-74
A numerical method that predicts through-the-thickness stresses accurately by using in-plane displacement of Efficient Higher Order Shell Theory (EHOST) as a postprocessor is implemented in nine-noded doubly curved shell element. In the present study, an efficient postprocess method is developed in the framework of shell finite element without losing the accuracy of solutions. This method consists of two steps. First is to obtain the relationship between shear angles of First Order Shear Deformation Theory (FSDT) and EHOST. Second is to construct accurate displacement and stress fields from the FSDT solution by using EHOST displacement fields as a postprocessor. To obtain accurate transverse shear stresses, integration of equilibrium equation approach is used. In the course of calculating transverse shear stresses, the computation of third derivatives of transverse deflection is required. Simply supported curved panels and finite cylinder problems demonstrate economical and accurate solution of laminate composite shells provided by the present method. The present postprocess method should work as an efficient tool in the stress analysis of multilayered thick shells.  相似文献   

5.
An improved eight-noded isoparametric quadratic plate bending element based on refined higher-order zigzag theory (RHZT) has been developed in the present study to determine the interlaminar stresses of multilayered composite laminates. The C0 continuous element has been formulated by considering warping function in the displacement field based on the RHZT. Shear locking phenomenon is avoided by considering substitute shear strain field. The continuity of transverse shear stresses cannot be ensured by the proposed zigzag formulation directly, and hence, the continuity conditions of transverse shear stresses have been established by using the three-dimensional (3D) stress equilibrium equations in the present study. The transverse shear stresses are computed in a simplified manner using the differential equations of stress equilibrium. A finite element code is developed by using MATLAB software package. The performance of the present finite element model is validated by comparing the results with 3D elasticity solutions. The superiority of the proposed element in view of computational efficiency, simplicity, and accuracy has been examined by comparing the present solutions with those available in published literature using other elements.  相似文献   

6.
7.
This paper investigates the effects of discrete layer transverse shear strain and discrete layer transverse normal strain on the predicted progressive damage response and global failure of fiber-reinforced composite laminates. These effects are isolated using a hierarchical, displacement-based 2-D finite element model that includes the first-order shear deformation model (FSD), type-I layerwise models (LW1) and type-II layerwise models (LW2) as special cases. Both the LW1 layerwise model and the more familiar FSD model use a reduced constitutive matrix that is based on the assumption of zero transverse normal stress; however, the LW1 model includes discrete layer transverse shear effects via in-plane displacement components that are C 0 continuous with respect to the thickness coordinate. The LW2 layerwise model utilizes a full 3-D constitutive matrix and includes both discrete layer transverse shear effects and discrete layer transverse normal effects by expanding all three displacement components as C 0 continuous functions of the thickness coordinate. The hierarchical finite element model incorporates a 3-D continuum damage mechanics (CDM) model that predicts local orthotropic damage evolution and local stiffness reduction at the geometric scale represented by the homogenized composite material ply. In modeling laminates that exhibit either widespread or localized transverse shear deformation, the results obtained in this study clearly show that the inclusion of discrete layer kinematics significantly increases the rate of local damage accumulation and significantly reduces the predicted global failure load compared to solutions obtained from first-order shear deformable models. The source of this effect can be traced to the improved resolution of local interlaminar shear stress concentrations, which results in faster local damage evolution and earlier cascading of localized failures into widespread global failure.  相似文献   

8.
In this paper, we investigate the vibration analysis of functionally graded material (FGM) and laminated composite structures, using a refined 8-node shell element that allows for the effects of transverse shear deformation and rotary inertia. The properties of FGM vary continuously through the thickness direction according to the volume fraction of constituents defined by sigmoid function, but in this method, their Poisson’s ratios of the FGM plates and shells are assumed to be constant. The finite element, based on a first-order shear deformation theory, is further improved by the combined use of assumed natural strains and different sets of collocation points for interpolation the different strain components. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The natural frequencies of plates and shells are presented, and the forced vibration analysis of FGM and laminated composite plates and shells subjected to arbitrary loading is carried out. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To validate and compare the finite element numerical solutions, the reference solutions of plates based on the Navier’s method, the series solutions of sigmoid FGM (S-FGM) plates are obtained. Results of the present theory show good agreement with the reference solutions. In addition the effect of damping is investigated on the forced vibration analysis of FGM plates and shells.  相似文献   

9.
This paper presents an eight‐node nonlinear solid‐shell element for static problems. The main goal of this work is to develop a solid‐shell formulation with improved membrane response compared with the previous solid‐shell element (MOS2013), presented in 1 . Assumed natural strain concept is implemented to account for the transverse shear and thickness strains to circumvent the curvature thickness and transverse shear locking problems. The enhanced assumed strain approach based on the Hu–Washizu variational principle with six enhanced assumed strain degrees of freedom is applied. Five extra degrees of freedom are applied on the in‐plane strains to improve the membrane response and one on the thickness strain to alleviate the volumetric and Poisson's thickness locking problems. The ensuing element performs well in both in‐plane and out‐of‐plane responses, besides the simplicity of implementation. The element formulation yields exact solutions for both the membrane and bending patch tests. The formulation is extended to the geometrically nonlinear regime using the corotational approach, explained in 2 . Numerical results from benchmarks show the robustness of the formulation in geometrically linear and nonlinear problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a versatile low order locking‐free mixed solid‐shell element that can be readily employed for a wide range of linear elastic structural analyses, that is, from thick isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and few assumed stress parameters that provide very accurate interlaminar stress calculations through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of the laminate. The element formulation is based on the well‐known Fraeijs de Veubeke–Hu–Washizu mixed variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar stress field in multilayer structures, which is achieved by the introduction of a constraint equation on the interlaminar stresses in the Fraeijs de Veubeke–Hu–Washizu principle‐based enhanced assumed strains formulation. The intelligent computer coding of the present formulation makes the present element appropriate for a wide range of structural analyses. To assess the present formulation's accuracy, a variety of popular numerical benchmark examples related to element convergence, mesh distortion, and shell and laminated composite analyses are investigated and the results are compared with those available in the literature. These benchmark examples reveal that the proposed formulation provides very good results for the structural analysis of shells and multilayer composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Mathematical models, for the stress analysis of unidirectional (0°) fiber-reinforced laminated composite double cantilever beam (DCB) specimen using classical beam theory, first and higher order shear deformation beam theories, have been developed to determine the mode I strain energy release rate (SERR) for unidirectional composites. In the present study, appropriate matching conditions at the crack tip of the DCB specimen have been derived by using variational principles. SERR has been calculated using compliance method. In general, the performance of shear deformation beam models of DCB specimen with variationally derived matching conditions at the crack tip is good in determining the SERR for medium to long crack lengths. Performance of higher order shear deformation beam model (having quadratically varying transverse displacement over the thickness) of DCB specimen, with non-variationally derived matching conditions at the crack tip, is good in determining the SERR for all the crack lengths in comparison with the available theoretical and finite element solutions in the literature. Higher order shear deformation beam theories having varying transverse displacement over the thickness are more appropriate to analyze DCB specimen as they predict the appropriate nature of the interlaminar normal stress at the crack tip and its distribution ahead of the crack tip.  相似文献   

12.
The contribution of this paper consists of new development of transverse shear stresses through the thickness and finding an expression for the critical time step for explicit time integration of layered shells. This work presents the finite element (FE) formulation and implementation of a higher‐order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement‐based third‐order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, special treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third‐order formulation. To assess the performance of the present shell element, it is implemented in the general non‐linear explicit dynamic FE code DYNA3D. Several problems are solved and results are presented and compared to other theoretical and numerical results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
There are few reports on the free vibration of soft core doubly-curved sandwich shells. Previous studies are largely based on the equivalent single layer theories in which the natural frequencies are grossly overestimated. This study deals with the analytical free vibrations of doubly curved sandwich shell with flexible core based on a refined general-purpose sandwich panel theory. In this theory, equations of motion are formulated based on displacements and transverse stresses at the interfaces of the core. The first order shear deformation theory and assumptions of linear distribution of transverse normal stress and uniform shear stresses over the thickness of core (based on 3D-elasticity solution of weak core) are used in the present theory. In this model, the in-plane displacements take cubic polynomial distributions and the transverse displacement has a quadratic one thorough the core thickness. Hamilton’s principle is used to obtain the equations of motion. The obtained results are validated by the analytical and numerical results published in the literatures. Parametric study is also included to investigate the effects of radius of curvature, thickness and flexibility of core.  相似文献   

14.
The previously developed numerical model of the authors for the analysis of conventional reinforced and prestressed concrete shells under short‐term and long‐term loading was improved by including the effects of transverse shear stresses on the shell failure. The 9‐node degenerated shell element with the layered material model through the thickness of the shell was used. The reinforcement was modelled as a separate layer. To include the effect of transverse shear stresses on the shell failure, the failure criterion for concrete and longitudinal reinforcement was defined by a relation of transverse shear stresses and normal stresses in two mutually perpendicular vertical planes. The total transverse shear bearing capacity of the shell cross‐section is obtained by summing up the concrete and reinforcement contributions. The developed numerical model and appropriate software were verified based on experimental tests.  相似文献   

15.
Analysis of angle‐ply laminates becomes critical and computationally involved because of the presence of extension–shear coupling. A refined three‐dimensional, mixed, 18‐node finite element (FE) model has been developed to analyse angle‐ply laminates under static loading. The minimum potential energy principle has been used for the development of the mixed FE model, where the transverse stress components (τxz, τyz and σz, where z is the thickness direction) have been incorporated as the nodal degrees of freedom, in addition to the three displacement fields. Further, continuity of transverse stress fields through the thickness of the plate and layerwise continuity of displacement fields have been enforced in the formulation. Because all the constitutive and the compatibility conditions have been ensured within the continuum, the present formulation is unique amongst the family of mixed FE models. Results have been obtained for various angle‐ply laminates and compared with analytical and finite‐element solutions, which have been found to be in good agreement with them. Some new results on angle‐ply with clamped–clamped support condition have also been presented to serve as benchmark results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper presents numerical evaluations related to the multilayered plate elements which were proposed in the companion paper (Part 1). Two‐dimensional modellings with linear and higher‐order (up to fourth order) expansion in the z‐plate/layer thickness direction have been implemented for both displacements and transverse stresses. Layer‐wise as well as equivalent single‐layer modellings are considered on both frameworks of the principle of virtual displacements and Reissner mixed variational theorem. Such a variety has led to the implementation of 22 plate theories. As far as finite element approximation is concerned, three quadrilaters have been considered (four‐, eight‐ and nine‐noded plate elements). As a result, 22×3 different finite plate elements have been compared in the present analysis. The automatic procedure described in Part 1, which made extensive use of indicial notations, has herein been referred to in the considered computer implementations. An assessment has been made as far as convergence rates, numerical integrations and comparison to correspondent closed‐form solutions are concerned. Extensive comparison to early and recently available results has been made for sample problems related to laminated and sandwich structures. Classical formulations, full mixed, hybrid, as well as three‐dimensional solutions have been considered in such a comparison. Numerical substantiation of the importance of the fulfilment of zig‐zag effects and interlaminar equilibria is given. The superiority of RMVT formulated finite elements over those related to PVD has been concluded. Two test cases are proposed as ‘desk‐beds’ to establish the accuracy of the several theories. Results related to all the developed theories are presented for the first test case. The second test case, which is related to sandwich plates, restricts the comparison to the most significant implemented finite elements. It is proposed to refer to these test cases to establish the accuracy of existing or new higher‐order, refined or improved finite elements for multilayered plate analyses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This work presents a formulation developed to add capabilities for representing the through thickness distribution of the transverse normal stresses, σz, in first and higher order shear deformable shell elements within a finite element (FE) scheme. The formulation is developed within a displacement based shear deformation shell theory. Using the differential equilibrium equations for two-dimensional elasticity and the interlayer stress and strain continuity requirements, special treatment is developed for the transverse normal stresses, which are thus represented by a continuous piecewise cubic function. The implementation of this formulation requires only C0 continuity of the displacement functions regardless of whether it is added to a first or a higher order shell element. This makes the transverse normal stress treatment applicable to the most popular bilinear isoparametric 4-noded quadrilateral shell elements.

To assess the performance of the present approach it is included in the formulation of a recently developed third order shear deformable shell finite element. The element is added to the element library of the general nonlinear explicit dynamic FE code DYNA3D. Some illustrative problems are solved and results are presented and compared to other theoretical and numerical results.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号