首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The process of low‐melting point (LMP) α‐phase formation in a quenched and annealed isotactic polypropylene (iPP) was studied by means of differential scanning calorimetry. The influence of preparation conditions (quenching and annealing temperatures, annealing times and sample thickness), together with the measurement parameters (heating and cooling rates), on the iPP melting behaviour are analysed. The results reveal a constant yield of LMP crystals over a wide range of quenching temperatures. This study also suggests that the LMP α‐crystals originate from the crystallization of polymer portions, which are somewhere between the amorphous and the smectic phase on the macromolecular scale of order. © 2001 Society of Chemical Industry  相似文献   

2.
Isothermal crystallization behavior of isotactic polypropylene (iPP) synthesized using metallocene catalyst was investigated in this work. The isotacticity of the polypropylene was characterized by 13C‐NMR spectroscopy. It was found that the melting temperature (Tm) of the iPP is 123.51°C and the crystallization temperature (Tc) is 93°C. The iPP synthesized in this work did not show a general increase of Tm with an increase of crystallization temperature Tc, due to the short crystallization time of 20 min and low molecular weight (number average molecular weight = 6,300). The iPP showed a tendency of increasing heat of fusion (ΔHf) with decreasing crystallization temperature. All the spherulites of iPP samples showed negative birefringence. For the iPP sample crystallized at the highest Tc (= 123°C, just below Tm), the spherulite showed a pronounced Maltese Cross and a continuous sheaf‐like texture aligning radially, which suggests that R‐lamellaes are dominant in this spherulite. The crystalline structure of the iPP was also investigated by X‐ray diffraction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 231–237, 2005  相似文献   

3.
4.
The measurement of crystallization and melting behaviors under constant rates of cooling and heating and the Avrami's analysis of isothermal crystallization were carried out for various metallocene‐ (MET‐PP) and Ziegler‐ Natta‐catalyzed (ZN‐PP) random polypropylene copolymers with various ethylene contents. Both the melting point Tm and the crystallization temperature Tc decrease with increasing ethylene content. Compared at the same ethylene content, both are lower for MET‐ PP because of the higher uniformities of stereoirregular bonds and copolymerization bonds. Tm and Tc show a linear correlation, and compared at the same Tc, Tm of MET‐PP is lower than that of ZN‐PP. This is because MET‐PP has narrower distributions of isotactic sequence length and hence of lamellar thickness than ZN‐PP. The heat of fusion and the latent heat of crystallization decrease with ethylene content. At the same ethylene content, both are lower for MET‐PP, owing also to the higher uniformities of stereoirregular bonds and copolymerization bonds. From the Avrami's analysis, it is assumed that there is little difference in crystallization modes of both catalyst PPs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1851–1857, 2002  相似文献   

5.
The nucleating ability of p‐cyclohexylamide carboxybenzene (β‐NA) towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry, X‐ray diffraction, polarized optical microscopy and scanning electron microscopy. β‐NA is identified to have dual nucleating ability for α‐iPP and β‐iPP under appropriate kinetic conditions. The formation of β‐iPP is dependent on the content of β‐NA. The content of β‐phase can reach as high as 96.96% with the addition of only 0.05 wt% β‐NA. Under non‐isothermal crystallization the content of β‐iPP increases with increasing cooling rate. The maximum β‐crystal content is obtained at a cooling rate of 40 °C min–1. The supermolecular structure of the β‐iPP is identified as a leaf‐like transcrystalline structure with an ordered lamellae arrangement perpendicular to the special surface of β‐NA. Under isothermal crystallization β‐crystals can be formed in the temperature range 80–140 °C. The content of β‐crystals reaches its maximum value at a crystallization temperature of 130 °C. © 2012 Society of Chemical Industry  相似文献   

6.
The influence of conformational order of glassy isotactic polypropylene (iPP) on its crystallization and melting behaviour was studied by wide‐angle X‐ray diffraction (WAXD), Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The glassy iPP samples with various conformational orders were prepared by freeze‐drying procedure from very dilute solution. WAXD and FTIR results suggest that although freeze‐dried samples are non‐crystalline, their conformational order is rather high and increases with decreasing concentration of parent solutions. With increasing conformational order of glassy samples, the cold crystallization peak shifts to lower temperature, indicating acceleration of crystallization. At low fusion temperature, the conformational order of melt obtained from freeze‐dried samples is high so that the relaxation time of single‐ and pauci‐chains to re‐entangle is long and the interpenetration between single‐ and pauci‐chain collective particles is slow. However, at high fusion temperature, the interpenetration process can be completed very quickly. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

8.
The melting behaviour of melt‐crystallized nylon 10,12 was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD). The results show that all nylon 10,12 crystals obtained under various conditions, including isothermal, non‐isothermal and stepwise crystallization, and also after partial melting or annealing, show multiple melting behaviour. It was found that each melting endotherm has a different origin. The highest melting peak corresponds to melting of the recrystallized material while the other melting endotherms are related to melting of lamellae with different thicknesses developing under different crystallization conditions. The equilibrium melting point of nylon 10,12 was also firstly estimated to be about 206 °C. © 2001 Society of Chemical Industry  相似文献   

9.
Two kinds of β-nucleating agents, named a rare earth complex (WBG) and a N,N′-dicyclohexylterephthalamide (TMB5), were introduced into isotactic polypropylene (iPP), and their effect on crystallization and melting behavior of iPP was comparatively investigated. Wide angle X-ray diffraction measurements revealed that both the two additives were highly effective in inducing β modification. At their respective optimum concentrations of 0.08 wt % for WBG and 0.06 wt % for TMB5, the relative amount of β-form calculated by Turner-Jones equation both exceeds 92%. However, the isothermal crystallization kinetics investigated by differential scanning calorimetry demonstrated that WBG had more pronounced effect than TMB5 in accelerating the overall crystallization rate. The Lauritzen–Hoffman theory analysis also revealed that WBG was more effective not only in increasing the nucleus number but also in accelerating the growth rate of crystallization. After completing isothermal crystallization process, the subsequent melting behavior examination suggested that the addition of WBG expanded the upper limit temperature of forming β modification, and therefore was more effective in delaying the β-α transformation than TMB5. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effect of self‐nucleation on the crystallization and melting behavior of isotactic polypropylene (i‐PP) and low ethylene content propylene–ethylene copolymers were investigated. Isothermal crystallization kinetics were studied using the Avrami equation and Lauritzen‐Hoffman nucleation theory. It was found that self‐nucleation can enhance the crystallization. The surface free energy ςe decreased for the self‐nucleated sample. The melting behavior was affected by the preselected temperature, Ts, at which the polymer was partially melted. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1559–1564, 1999  相似文献   

11.
The isothermal and nonisothermal crystallization kinetics of nonnucleated and nucleated isotactic polypropylene (iPP) were investigated by DSC and a polarized light microscope with a hot stage. Dibenzylidene sorbitol (DBS) was used as a nucleating agent. It was found that the crystallization rate increased with the addition of DBS. The influence of DBS on fold surface energy, σe, was examined by the Hoffman and Lauritzen nucleation theory. It showed that σe decreased with the addition of DBS, suggesting that DBS is an effective nucleating agent for iPP. Ozawa's theory was used to study the nonisothermal crystallization. It was found that the crystallization temperature for the nucleated iPP was higher than that for nonnucleated iPP. The addition of DBS reduced the Ozawa exponent, suggesting a change in spherulite morphology. The cooling crystallization function has a negative exponent on the crystallization temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2089–2095, 1998  相似文献   

12.
Cavitation during isothermal crystallization of thin films of isotactic polypropylene was investigated systematically by light microscopy. Cavitation results from the negative pressure buildup due to density change during crystallization in the pockets of melts occluded by impinging spherulites. The morphology of such areas was also studied by SEM. The value of the negative pressure at the moment of cavitation was calculated from the drop of the spherulite growth rate. It was shown that the process of cavitation and the value of the negative pressure causing cavitation depend on the crystallization temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2439–2448, 2001  相似文献   

13.
The melting and crystallization behaviors of the skin layer in an injection‐molded isotactic polypropylene (PP) have been studied, mainly in comparison with those of the core layer and subsidiarily in comparison with those of a compression‐molded PP and a nucleator (talc)–added PP. The skin layer contains about 5% crystals, which have a high melting point of up to 184°C. They thermally vanish by melting once. The subsequent melting history will scarcely affect the melting behaviors. On the other hand, crystallization behaviors are strongly affected by the melting history. The skin layer crystallizes in a wide temperature range at high temperature. This tendency weakens with increasing melting temperature, approaching a constant and that of the core layer above 230°C, which suggests that the memory effect of the residual structure of PP vanishes by melting above 230°C. In explaining these experimental results, it is assumed that the residual structure substance is a melt orientation of molecular chains that works as crystallization nuclei and that the vanishing of the residual structure is nothing but a relaxation of the melt orientation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1751–1762, 2000  相似文献   

14.
This article highlights the melt crystallization behavior of different grades of isotactic polypropylene (iPP) using a hot‐stage polarizing optical microscopy. iPP samples were heated up at a heating rate of 10°C/min passing the melting temperature and then kept for 3 min at a temperature range of 175–200°C before they cooled rapidly at 40°C/min to crystallize isothermally at a range of 130–145°C. It has been found that the temperature at which the samples were kept has a strong effect on the crystallization mode; for samples heated up and kept at temperatures below 190°C, the crystallization started with thin and long rods or nodules, which grew in the circumferential direction only while their lengths remain unchanged as the time passed. The shape of the nodules can be straight, circular, branched, or entangled, and they can grow parallel to each other or they can be crossed or in a random way. This phenomenon disappeared completely for samples melted and kept at temperatures above 195°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Seven samples of isotactic polypropylene were examined to study the influence on the formation of the γ crystalline phase of possible regiodefects along the chain. Wide‐angle X‐ray diffraction allowed the determination of the percentage of the γ phase in the samples and 13C‐NMR spectroscopy was used to correlate the development of the γ phase with the existence of regioirregular structural units along the chain. Furthermore, it was possible to appraise the contributions given by the different families of lamellae to the small‐angle X‐ray diffraction patterns. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 375–384, 2001  相似文献   

16.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The crystallization and melting behavior are closely related not only to the external conditions such as undercooling and cooling rate, but also to the chain structure characteristics such as isotacticity distribution. The isotacticity distribution of three commercial isotactic polypropylenes (iPP) used in this work was characterized using Temperature‐Rising Elution Fractionation (TREF) combining with Size‐Exclusion Chromatography (SEC). Their crystallization and melting behavior were observed by Differential Scanning Calorimetry (DSC) and Polarized Light Microscopy (PLM). The results indicated that for iPP with similar molecular weight and isotacticity, the difference in isotacticity distribution not only led to the variation in nucleation and growth rates of crystal, but also changed the perfection of crystals formed under the same condition, even causing the formation of different crystalline modification and the change in the equilibrium melting temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 333–341, 2002  相似文献   

18.
Nucleation effects of 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate metal salts as a nucleating agent for isotactic polypropylene (iPP) were investigated with differential scanning calorimeter and polarized optical microscope, and their effects on mechanical, optical, and heat resistance properties of iPP were also studied. The results showed that monovalent metal salts of substituted aromatic heterocyclic phosphate such as sodium salt, lithium salt, and potassium salt had a good performance. With 0.2 wt % of sodium salt, lithium salt, or potassium salt incorporated into iPP, the crystallization peak temperature of iPP could be increased by 13.5, 13.6, and 15.0°C, respectively; the mass fraction of crystallinity of iPP could be increased by about 5%; and crystallization rate was enhanced increasingly. Meanwhile the tensile strength and flexural modulus of iPP could be increased by about 10 and 30%, respectively, and the clarity and heat distortion temperature of iPP could also be improved significantly. But bivalent and trivalent metal salts of substituted aromatic heterocyclic phosphate had little effect on properties of iPP. Meanwhile the morphology study showed that the addition of monovalent sodium salt could decrease the spherulite size of iPP significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4868–4874, 2006  相似文献   

19.
Polyolefins containing 1,3‐disubstituted cyclopentane units in the main chain have been synthesized by 1,3‐polymerization of cyclopentene (PCP), cyclization polymerization of 1,5‐hexadiene (PHD), and ring‐opening metathesis polymerization of norbornene following hydrogenation of the unsaturated main chain (H‐PNB) with various transition metal catalysts. These polyolefins were applied to nucleating agents for isotactic polypropylene, and relationship between the structure of the polyolefins and nucleating effect was studied by DSC, polarized optical microscope, and WAXD. All the polyolefins had an effect of nucleation for isotactic polypropylene (PP). Of the polymeric nucleating agents, H‐PNB showed the most effective nucleation. Addition of PCP, which was obtained with a nickel catalyst with diimine ligand, to PP induced β‐modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2953–2958, 2006  相似文献   

20.
The formation, melting and phase transition of isotactic polybutene-1 under high hydrostatic pressures were studied by high-pressure d.t.a. and X-ray diffraction up to 5 kbar. The d.t.a. thermogram of melting of form I shows a single endothermic peak up to 5 kbar. Form II crystallized directly from the melt at atmospheric pressure is metastable and it transforms to form I by the application of pressure. Above 900 bar, it transforms to form I completely and the endothermic peak of melting of form II is not observed. On crystallization from the melt under high pressure, the percentage content of form I' increases with crystallization pressure and at 1.6 kbar only form I' is crystallized. Above 2 kbar form II', which shows the same X-ray diffraction pattern as form II, is crystallized from the melt. The percentage content of form II' increases with pressure above 2 kbar, and that of form I' decreases up to 5 kbar. Upon heating under high pressure above 2 kbar, a solid-solid transition from form II' to form I' is observed in d.t.a. traces and the transition is confirmed by high-pressure X-ray diffraction. The melting temperature is expressed in the form of a quadratic equation as a function of pressure for four different forms in IPB-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号