共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001 相似文献
2.
The effect of self‐nucleation on the crystallization and melting behavior of isotactic polypropylene (i‐PP) and low ethylene content propylene–ethylene copolymers were investigated. Isothermal crystallization kinetics were studied using the Avrami equation and Lauritzen‐Hoffman nucleation theory. It was found that self‐nucleation can enhance the crystallization. The surface free energy ςe decreased for the self‐nucleated sample. The melting behavior was affected by the preselected temperature, Ts, at which the polymer was partially melted. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1559–1564, 1999 相似文献
3.
The melting and crystallization behaviors of the skin layer in an injection‐molded isotactic polypropylene (PP) have been studied, mainly in comparison with those of the core layer and subsidiarily in comparison with those of a compression‐molded PP and a nucleator (talc)–added PP. The skin layer contains about 5% crystals, which have a high melting point of up to 184°C. They thermally vanish by melting once. The subsequent melting history will scarcely affect the melting behaviors. On the other hand, crystallization behaviors are strongly affected by the melting history. The skin layer crystallizes in a wide temperature range at high temperature. This tendency weakens with increasing melting temperature, approaching a constant and that of the core layer above 230°C, which suggests that the memory effect of the residual structure of PP vanishes by melting above 230°C. In explaining these experimental results, it is assumed that the residual structure substance is a melt orientation of molecular chains that works as crystallization nuclei and that the vanishing of the residual structure is nothing but a relaxation of the melt orientation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1751–1762, 2000 相似文献
4.
Cavitation during isothermal crystallization of thin films of isotactic polypropylene was investigated systematically by light microscopy. Cavitation results from the negative pressure buildup due to density change during crystallization in the pockets of melts occluded by impinging spherulites. The morphology of such areas was also studied by SEM. The value of the negative pressure at the moment of cavitation was calculated from the drop of the spherulite growth rate. It was shown that the process of cavitation and the value of the negative pressure causing cavitation depend on the crystallization temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2439–2448, 2001 相似文献
5.
The isothermal and nonisothermal crystallization kinetics of nonnucleated and nucleated isotactic polypropylene (iPP) were investigated by DSC and a polarized light microscope with a hot stage. Dibenzylidene sorbitol (DBS) was used as a nucleating agent. It was found that the crystallization rate increased with the addition of DBS. The influence of DBS on fold surface energy, σe, was examined by the Hoffman and Lauritzen nucleation theory. It showed that σe decreased with the addition of DBS, suggesting that DBS is an effective nucleating agent for iPP. Ozawa's theory was used to study the nonisothermal crystallization. It was found that the crystallization temperature for the nucleated iPP was higher than that for nonnucleated iPP. The addition of DBS reduced the Ozawa exponent, suggesting a change in spherulite morphology. The cooling crystallization function has a negative exponent on the crystallization temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2089–2095, 1998 相似文献
6.
Seven samples of isotactic polypropylene were examined to study the influence on the formation of the γ crystalline phase of possible regiodefects along the chain. Wide‐angle X‐ray diffraction allowed the determination of the percentage of the γ phase in the samples and 13C‐NMR spectroscopy was used to correlate the development of the γ phase with the existence of regioirregular structural units along the chain. Furthermore, it was possible to appraise the contributions given by the different families of lamellae to the small‐angle X‐ray diffraction patterns. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 375–384, 2001 相似文献
7.
Isotactic polypropylene fiber (IPP) was graft‐copolymerized using 2‐vinyl pyridine (2‐VP) and styrene (sty) as the monomers by the mutual irradiation method in air. The percentage of grafting was determined as a function of various reaction parameters and it was found that the maximum grafting of 2‐VP (114%) and sty (76%) was obtained at an optimum dose of 1.08 × 104 and 0.64 × 104 Gy using 1.8 × 10−2 mol of 2‐VP and 4.3 × 10−2 mol of sty, respectively. The graft copolymers were characterized by differential scanning calorimetric analysis and isolation of the grafted chains from the grafted iPP samples. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2959–2969, 1999 相似文献
8.
The formation, melting and phase transition of isotactic polybutene-1 under high hydrostatic pressures were studied by high-pressure d.t.a. and X-ray diffraction up to 5 kbar. The d.t.a. thermogram of melting of form I shows a single endothermic peak up to 5 kbar. Form II crystallized directly from the melt at atmospheric pressure is metastable and it transforms to form I by the application of pressure. Above 900 bar, it transforms to form I completely and the endothermic peak of melting of form II is not observed. On crystallization from the melt under high pressure, the percentage content of form I' increases with crystallization pressure and at 1.6 kbar only form I' is crystallized. Above 2 kbar form II', which shows the same X-ray diffraction pattern as form II, is crystallized from the melt. The percentage content of form II' increases with pressure above 2 kbar, and that of form I' decreases up to 5 kbar. Upon heating under high pressure above 2 kbar, a solid-solid transition from form II' to form I' is observed in d.t.a. traces and the transition is confirmed by high-pressure X-ray diffraction. The melting temperature is expressed in the form of a quadratic equation as a function of pressure for four different forms in IPB-1. 相似文献
9.
Polypropylene (PP) composites with high filler content have been prepared with surface‐treated fillers. The effect of the filler is twofold; nucleation of crystallization occurs, though the PP is also adsorbed onto the filler thereby retarding its motion. Differential scanning calorimetry has been used to study the crystallization of the PP. Melting and recrystallization during melting has been characterized by differential scanning calorimetry. The properties of the composites are more than an additive combination of the filler and polymer. In the case of highly filled composites, the morphology of the PP is important in limiting brittleness and for the strength of the interface between filler and polymer. Surface treatment of the filler has been found to have a significant control over the morphology and properties of the composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1942–1948, 2001 相似文献
10.
This article is a part of a study of model and bulk composites, based on isotactic polypropylene (i-PP) and glass (or carbon) fibers, produced from knitted textile preforms of hybrid yarns. First, we report the results on crystallization and fusion of textile-grade i-PP, used for the processing of hybrid yarns and the corresponding knitted fabrics. The kinetics of the crystallization process, in the dynamic and isothermal regime, was followed by DSC, and the results were analyzed by Avrami, Ozawa, and Harnisch-Muschik methods. Isothermal crystallization of i-PP was carried out at 388–400 K, and values for the Avrami exponent ranging from 1.93 to 4.39 were determined. The equilibrium melting temperature was determined by the Hoffman-Weeks method, and γ = 2.54 was found. Double melting peaks were observed both when the crystallization was performed at lower temperatures (isothermal regime) and at higher cooling rates (nonisothermal regime). A single melting peak appeared upon melting following isothermal crystallization at 400 K. The nonisothermal kinetics data showed that the peak crystallization temperature changes from 377 to 386 K as the cooling rate decreases from 20 to 3 K/min. Applying the Ozawa method, a value of the exponent n = 2.33 was determined, which is in agreement with the results for isothermal crystallization at 391–400 K. The Harnisch-Muschik approach was also applied to compare the results for n, and a similar trend in the results of isothermal and nonisothermal crystallization was found, due to the predominant homogeneous mechanism of nucleation at lower cooling rates (lower isothermal Tc) in spite of being heterogeneous at higher cooling rates (higher isothermal Tc). © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 395–404, 1998 相似文献
11.
固相氯化法氯化等规聚丙烯结构分析 总被引:6,自引:0,他引:6
借助DSC,IR,^1H-NMR方法对搅拌式固相氯化制备的氯化等规聚丙烯的宏观氯原子分布和微观氯原子分布进行了分析。结果表明,搅拌式固相氯化法能够迅速破坏等规聚丙烯的结晶,从而得到宏观氯原子分布均匀的CIPP。此方法制备的CIPP主要为等丙烯分子链上的仲氢原子被取代的产物。 相似文献
12.
The research in this article explores the response of semicrystalline isotactic polypropylene to gamma radiation in air, and relates the morphological changes of the polymer to corresponding changes in mechanical properties. The effect of the initial morphology of the polymer on its response to irradiation is considered using infrared spectroscopy (FTIR), small‐ and wide‐angle X‐ray scattering, dynamic mechanical thermal analysis (DMTA), and mechanical testing. The extent of chain scission and crosslinking is dependent on the dose but not the initial starting morphology. These chemical changes cause the crystallinity to increase slightly, and the glass transition temperature to rise by a few degrees in all samples, but the overall morphology is only subtly changed. In contrast, a major deterioration in mechanical properties is caused. The effects of the irradiation observed under these conditions are similar in each material and the ultimate properties determined by the properties seen in the original material. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2234–2242, 1999 相似文献
13.
Crystallization behaviour of isotactic polypropylene/linear low density polyethylene (iPP/LLDPE) blends has been investigated by optical microscopy and DSC. Crystallization of iPP depends upon blend composition and thermal history. When blended with LLDPE, the crystallization temperature of iPP, Tc, decreased slightly. Crystallinity did not change in the range 0-80wt% LLDPE; there were only slight changes in the crystalline structure, but LLDPE seemed to resist forming the β type of spherulites. Below 80 wt% of LLDPE, iPP was a continuous phase. The iPP spherulite growth rate was almost constant; however, overall crystallization decreased due to decreasing primary nuclei density. 相似文献
14.
Liquid–liquid phase separation and crystallization of polydisperse isotactic polypropylene solutions
Phase diagrams were calculated based on Flory-Huggins solution thermodynamics to investigate the effects of polydispersity of polymer molecules and interaction parameter on the phase equilibria of crystallizable polymer solutions. The polydispersity was modeled with blends of two monodisperse polymers differing in chain lengths as a simplification. It was found that a longer chain length component could be separated easily to a polymer-rich phase by liquid demixing, but a shorter chain length component might exist at relatively constant concentration in each phase on fractionation. The influence of polydispersity on the liquid–solid phase equilibrium was small, and the phase boundary could be moved significantly in the region of low concentration of polymer by a small change of temperature. Liquid–liquid phase separation was more sensitive to the interaction between polymer and solvent than liquid–solid phase transition. Numerical calculations showed that the temperature at which liquid–liquid phase separation was coupled with liquid–solid phase equilibrium increased with a lower concentration of the polymer due to polydispersity of polymer chain lengths, and this phenomenon was observed at a lower temperature with more favorable interaction. The results were consistent with the experimental observations of isotactic polypropylene solutions. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 849–857, 1998 相似文献
15.
等规聚丙烯-丙烯酸接枝共聚 总被引:2,自引:0,他引:2
详细研究了等规聚丙烯细粒子在丙烯酸水溶液中,以过氧化苯甲酰为引发剂的液-固相接枝共聚反应和十氢化萘乙醇溶液对等规聚丙烯的膨化预处理作用,检测了等规聚丙烯-聚丙烯酸的某些性质,发现随接枝率提高,其吸湿性和碱性染料染色性均提高,熔点略有降低,但熔体流动性下降,按本研究获得的最佳膨化预处理条件和最佳接枝共聚反应条件,接枝产物等规聚丙烯-聚丙烯酸的接枝率可超过13%。 相似文献
16.
间规聚苯乙烯/等规聚丙烯共混物的热性能 总被引:1,自引:0,他引:1
用差示扫描量热法(DSC)、动态力学分析(DMA)和热重法(TGA)等研究了间规聚苯乙烯/等规聚丙烯(sPS/iPP)、sPS与聚-1-丁烯(B30)组成的嵌段共聚物和sPS/iPP/B30共混体系的热性能。结果表明sPS/iPP是不相容体系,B30与iPP可相容,B30可作为sPS/iPP共混物的相容剂。DSC和DMA分析结果表明,加入适量的B30时,sPS/iPP/B30共混物中iPP的玻璃化转变温度随B30加入量的增加而逐渐升高,而sPS的玻璃化转变温度则随B30加入量的增加而逐渐降低;TGA分析结果表明共混体系的热失重温度高于300℃,比iPP的高。 相似文献
17.
18.
马来酸酐/苯乙烯多单体接枝低等规聚丙烯 总被引:2,自引:1,他引:1
低等规聚丙烯(LIPP)是由等规立构和间规立构组成的嵌段共聚物,具有低的结晶性能,良好的粘接性和加工性能,在胶粘剂领域有着广阔的应用前景。然而LIPP的非极性和低的机械性能限制了它的应用。本文采用溶液法,以过氧化二异丙本(DCP)为引发剂,以苯乙烯(St)作为共聚单体,将马来酸酐(MAH)接枝到低等规聚丙烯(LIPP)大分子链上,采用化学滴定法测定产物(LIPP-g-MAH-St)的接枝率(GR),并系统地研究了加料方式,单体用量,引发剂用量,反应时间等因素对GR的影响,结果表明,采用先加入引发剂的加料方式有利于马来酸酐对低等规聚丙烯的接枝反应,反应的最佳条件是:反应时间7h,MAH的加入量为9份(以100份LIPP计),引发剂DCP的加入量为0.45份。 相似文献
19.
The isothermal crystallization behavior and melting characteristics of pure polypropylene (PP) and PPs nucleated with a phosphate nucleating agent (A) and a sorbitol derivative (D) have been studied by differential scanning calorimetry (DSC). Compared with pure PP, nucleated PPs show a shorter half‐times of crystallization. Dependence of crystallization rate of nucleated PP on the crystallization temperature is stronger than that of pure PP at the higher crystallization temperature, whereas the opposite results are obtained at the lower crystallization temperature. Addition of nucleating agent shifts the temperature at the deviation from the baseline of DSC melting curve, T, and the temperature at the completion of melting, T, to higher temperatures, indicating that nucleated PPs exhibit a higher perfection of PP crystals. A shoulder peak in the high temperature range of melting peak of nucleated PP and a wider low temperature region in the melting peak of pure PP are observed. Obviously, PP and nucleated PPs form different distribution of crystal perfection in the isothermal crystallization process. According to the half‐time of crystallization, nucleating agent A is more effective than D. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2547–2553, 2000 相似文献
20.
Graft copolymerization of methacrylic acid onto isotactic polypropylene has been studied in water–methanol medium using γ-rays as the source of initiation. Graft copolymerization has been conducted by (1) mutual irradiation, (2) preirradiation, and (3) double irradiation methods. All of the reaction parameters that seem to influence grafting have been studied, and the optimum conditions leading to maximum percentage of grafting have been evaluated. A plausible mechanism for radiation-induced grafting of methacrylic acid onto polypropylene has been suggested, and the results have been explained on the basis of the proposed mechanism. A comparative study of graft copolymerization by different radiation methods has been made, and it was observed that the preirradiation method affords the best results. Evidence of grafting has been obtained from differential scanning calorimetric analysis and the dyeing behavior of the grafted material. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 143–152, 1998 相似文献