共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
高熵合金(High-entropy alloys, HEA)由于具有优异的力学性能、抗高温氧化性能、耐腐蚀性能等优点,受到了越来越多学者的关注。目前高熵合金的制备一般采用传统的铸锻轧,这对于制备一些形状复杂的高端零部件和超细晶组织是一种严峻的挑战,而采用增材制造(Additive Manufacturing,AM)技术是解决上述问题的一个有效途径。重点阐述了国内外近年来在高熵合金增材制造材料种类、快速凝固非平衡组织演化、裂纹等成形缺陷、力学性能及成形特征方面的研究进展,为增材制造高熵合金进一步发展提供一定参考。最后,对增材制造高熵合金的研究进展进行了总结,并对增材制造高熵合金成分的设计提供了一定的思路。 相似文献
3.
4.
基于搅拌摩擦的固相增材制造是大型轻质合金构件成形制造的新技术,已成为国内外先进成形制造领域研究的热点之一。本文对目前国内外基于搅拌摩擦的金属固相增材制造技术及其相关工艺机理的研究现状进行了分析和总结。常见的基于搅拌摩擦的固相增材制造技术可分为三类:基于搅拌摩擦搭接焊原理,使板材逐层堆积,从而获得增材构件的搅拌摩擦增材制造(friction stir additive manufacturing,FSAM)技术;采用中空搅拌头,通过添加剂(粉末或丝材)进行固相搅拌摩擦沉积的增材制造(additive friction stir deposition,AFSD)技术;采用消耗型棒材,通过棒材的摩擦表面处理,形成增材层的摩擦表面沉积增材制造(friction surfacing deposition additive manufacturing,FSD-AM)技术。重点分析了金属材料基于搅拌摩擦的固相增材制造技术的国内外研究与应用现状,对比了三类基于搅拌摩擦的固相增材制造技术的特征及其工艺优缺点。最后指出增材工艺机理、形性协同控制、外场辅助工艺改型、新材料应用和人工智能优化是基于搅拌摩擦的固相增材制造技术未来研究的重点方向。 相似文献
5.
高熵合金不同于传统工程合金,是由多种元素以等摩尔或近等摩尔的比例混合,形成的以简单固溶体结构为基体的系列成分复杂合金。其中含高熔点元素的难熔高熵合金具有较高的高温强度和优异的高温抗氧化性能及耐蚀性能等突出特点,其潜在的高温应用价值引起了广泛关注。详细阐述了难熔高熵合金的研究现状及应用,根据晶体结构类型将难熔合金体系进行了分类,并对各类体系中的微观组织特征进行了概述;进而归纳总结了难熔高熵合金的各种性能,包括高强度、耐磨性、高温抗氧化性、耐蚀性能等;最后对难熔高熵合金的发展及应用前景进行了展望。 相似文献
6.
7.
AlCoCrFeNi2.1共晶高熵合金具备细小、均匀、规则的片层结构,在较宽的温度(70~1000 K)和成分偏差范围内均具备良好的组织结构和强塑性兼备的力学性能,因而成为目前研究最为广泛的共晶高熵合金。本文针对增材制造AlCoCrFeNi2.1共晶高熵合金,综述了不同工艺和工艺参数对该合金的微观组织和力学性能的影响,重点阐述了选区激光熔化技术制备AlCoCrFeNi2.1共晶高熵合金的相分布、微观组织和强化机制。最后,指出当前增材制造AlCoCrFeNi2.1共晶高熵合金相形成机理及组织演化过程中存在的分歧和不足,并提出以AlCoCrFeNi2.1共晶高熵合金为基体的材料改性、增材制造高熵合金新工艺研究开发等发展方向,为推动该合金的工业化应用提供思路。 相似文献
8.
增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术,该技术颠覆了传统加工设计和制造理念,同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合,可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述,介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段,将成为推动智能材料发展的关键。 相似文献
9.
电弧增材制造因其独特的无模壳快速近净成形特点而备受关注,有望成为突破铝合金材料研发与工业应用瓶颈的先进制造技术。电弧增材技术在传统电弧焊接的基础上发展而来,二者均以高能电弧为热源、以金属丝材为原材料进行成形。本文综合分析了电弧增材制造工艺与设备研发现状、凝固与固态相变特性、显微组织特点、冶金缺陷概况以及力学性能特点,论述了热丝及多丝增材制造技术前景和电弧增材制造独特的成形方式与相变显微组织特征。针对电弧增材制造铝合金制造精度及稳定性较差、气孔及热裂缺陷严重、材料力学性能优势不突出的问题,提出了电弧增材制造专用设备开发、熔丝累加快速凝固冶金缺陷控制专用方法研发、专用材料成分及显微组织设计、专用热处理工艺制定等发展方向,为加快电弧增材制造铝合金高端化、定制化、专属化发展提供重要参考。 相似文献
10.
11.
Al元素对Al_xFeCrCoCuV高熵合金组织及摩擦性能的影响EI北大核心CSCD 总被引:1,自引:0,他引:1
采用非自耗电弧熔炼炉制备了Al_xFeCrCoCuV(x=0,0.5,1.0)多组元高熵合金。用XRD,SEM,EDS和DSC技术探究了合金的微观组织,并测试了其硬度及耐磨性能。研究表明:随着Al的加入,Al_(0.5)FeCrCoCuV合金和Al_(1.0)FeCrCoCuV合金由FeCrCoCuV合金单一的BCC相变为由枝晶BCC和晶间FCC共同组成的双相组织;Al_(1.0)FeCrCoCuV合金的硬度大于Al_(0.5)FeCrCoCuV合金。合金的摩擦磨损测试主要以黏着磨损为主,合金的耐磨性能与硬度成正比。3种合金的摩擦因数都是随着时间的增加而减小,主要原因是随着摩擦时间的增加,合金表面生成了一层氧化物提高了合金的耐磨性能。 相似文献
12.
近年来,高熵合金成为金属材料领域的研究热点。高熵合金处于相图中心区域,具有广阔的合金成分空间和组织结构形成可能;成分和制备工艺的协同调控,能够获得更丰富的组织结构;非常规的化学结构有望突破传统抗磨、润滑合金的性能极限。本文讨论了耐磨高熵合金的分类,分析了化学活泼金属、软金属、难熔金属的添加对高熵合金抗磨、润滑性能的影响规律;总结了非金属元素和陶瓷相的添加对高熵合金基复合材料摩擦磨损性能的影响;综述了热处理和表面工程技术对高熵合金表面组织结构和摩擦磨损行为的作用;讨论了苛刻工况下抗磨润滑高熵合金的设计方法。对未来高熵合金在摩擦磨损领域的研究和应用进行了展望,高熵合金在解决传统合金的瓶颈问题上具有巨大潜力,如在极端工况下实现稳定润滑抗磨、保证特定功能作用下实现抗磨。 相似文献
13.
高熵合金(HEAs),又称为多主元固溶体合金,其因独特的合金设计理念和优异的综合性能而引起国内外研究人员的普遍关注,逐渐成为金属材料领域的研究热点.难熔高熵合金(RHEAs)是基于难熔元素的高熵合金而设计开发的一种新型高温合金,与传统的高温合金相比,RHEAs具有更高的高温强度、高温抗氧化性能及高温相稳定性,在航空航天、石油化工等领域具有广阔的应用前景,自2010年被提出以来,已成为高熵合金研究领域的一个重要分支.迄今为止,学者们主要将第4、5、6周期及第Ⅳ、Ⅴ、Ⅵ副族的9种元素(Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W)以及Al、C、Co、Ni等附加元素作为难熔高熵合金的主元,形成了复杂多样的合金体系.已报道的合金体系有100多种,这些合金的相结构从单相BCC结构到BCC1+BCC2、BCC+Laves等两相再到多相结构,呈现出结构多样性,组织有枝晶、等轴晶以及共晶组织或形变孪晶组织等,由此得到的性能也各有所长.RHEAs的制备最先采用熔炼法,包括电弧熔炼和感应熔炼,要求在高纯保护气体下进行多次重熔.近年来也有研究采用粉末冶金法制备RHEAs,获得了颗粒尺寸细、成分较均匀的合金.此外,激光熔覆法、磁控溅射等也被引入到RHEAs的材料或涂层制备.可见,RHEAs在成分设计、制备工艺、相结构与微观组织、室温及高温性能等方面的研究正不断取得新的进展.本文综述了近年来国内外RHEAs的研究现状,就其主元组成、相结构和制备方法进行了系统的介绍,并归纳了包括密度和强塑性、高温抗氧化性以及耐磨耐蚀性等性能的演变规律,最后指出了RHEAs面临的挑战并提出未来研究重点的建议. 相似文献
14.
研究了采用激光熔覆技术制备的MoNbTaVW难熔高熵合金涂层在不同载荷(10N、20N、30N)、不同微动磨损幅值(50μm、150μm、250μm)、不同循环次数(5 000、10 000、15 000)下的微动磨损性能及微动磨损机制。结果表明:所制备的MoNbTaVW难熔高熵合金涂层由Fe7Ta3型HCP固溶体相、FCC固溶体相及(Fe,Ni)基体相组成,其中FCC相为未熔的高熵合金粉末。根据正交实验极差分析可知,微动磨损幅值对磨损体积的影响最大,微动磨损载荷对磨损体积的影响次之,微动磨损循环次数对磨损体积的影响最小,其中MoNbTaVW难熔高熵合金涂层在15 000次、20N、250μm微动磨损条件下的磨损体积达到最大值;微动磨损载荷对摩擦系数的影响最大,微动磨损幅值对摩擦系数的影响次之,微动磨损循环次数对摩擦系数的影响最小,其中MoN bTaVW难熔高熵合金涂层在10 000次、30 N、150μm微动磨损条件下的摩擦系数达到最大值。MoNbTaVW难熔高熵合金涂层的微动磨损机制主要为氧化磨损和黏着磨损,磨损产生的磨损碎片主要为Ta、... 相似文献
15.
作为一种集先进制造、智能制造、绿色制造、新材料应用、精密控制等技术于一体的高新技术,增材制造技术从原理上突破了复杂异形构件的技术瓶颈,实现材料微观组织与宏观结构的可控成型,从根本上改变了传统“制造引导设计、制造性优先设计、经验设计”的设计理念,真正意义上实现了“设计引导制造、功能性优先设计、创新设计”的转变,为全产业创新、全面提升制造水平、发展新兴产业与国防事业开辟了巨大空间。 相似文献
16.
高熵合金是基于多组元成分构成且易于形成简单固溶体的一种新型合金,研究揭示该合金表现出传统金属所无法比拟的特性,如:超常的低温韧性,良好的抗热软化性/高温强度,优异的耐磨性以及良好的抗辐照损伤性等,因此也成为最具有发展潜力和应用前景的材料之一。 相似文献
17.
18.
先进陶瓷材料以其优异的力学性能和化学稳定性以及各种声光电磁热特性,在各个领域获得广泛应用。随着当前科技水平的不断提高,特别是在尖端应用场景中,对先进陶瓷部件的结构和功能要求也越来越高,其结构复杂化、功能多元化导致传统制造成型方法存在一定局限性,而增材制造的出现为解决上述问题提供了新思路。陶瓷增材制造领域涉及材料、化学、机械、控制、光学、力学等相关交叉学科,是一个新兴研究方向,在机械电子、通讯、能源环保、航空航天、生物医疗、艺术珠宝等领域极具发展前景。 相似文献
19.
高熵合金因其多种合金元素以等原子比或近等原子比的组合而具有高熵效应、严重的晶格畸变、缓慢扩散以及特殊而优异的材料性质等特点,在各个领域引起极大的关注。其高强度和硬度、抗疲劳性、优异的耐腐蚀性、耐辐照性以及接近零的热膨胀系数、催化响应、热电响应及光电转换等特性,使高熵合金在许多方面有潜在的应用。高通量计算及机器学习技术迅速成为探索高熵合金巨大成分空间和综合预测材料性能的有力手段。本文介绍高通量计算与机器学习的基本概念,论述第一性原理计算、热动力学计算与机器学习在高熵合金研究中的优势,并总结它们在高熵合金成分筛选、相与组织计算以及性能预测等方面的应用研究现状。最后提出该领域目前存在的问题,并提供解决思路与未来展望,包括开发适用于高熵合金的第一性原理计算与机器学习工具、构建高质量高熵合金数据库、将高通量计算与机器学习相融合对高熵合金的力学及服役性能进行全局优化等。 相似文献
20.
采用机械合金化方法与增材制造技术制备了(FeCoCrNi)88-xMo8WNb3Cx(x=0.25、0.5、0.75、1、1.5、2、2.5)高熵合金成型件。在明确该高熵合金形成规律的基础上,进一步分析了C含量对其组织和力学性能的影响规律。结果表明:当C含量介于0.25%~2.50%(摩尔分数)之间时,(FeCoCrNi)88-xMo8WNb3Cx高熵合金均由FCC相和M6C相组成;随着C含量的增加,合金的抗压强度逐渐增加,塑性呈先增大后减小趋势;当C含量为2.00%时,合金的综合力学性能最优,其抗压强度为1 993.4 MPa,断裂应变为31.5%。 相似文献