首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
On many hillsides of Taiwan there is a unique pattern of weed exclusion byPhyllostachys edulis (bamboo) andCryptomeria japonica (conifer) in which the density, diversity, and dominance of understory species are very different. Although the physical conditions of light, soil moisture, and soil nutrients strongly favor the growth of understory in a bamboo community, the biomass of its undergrowth is significantly low, indicating that physical competition among the understory species in the bamboo and conifer communities does not cause the observed differences. However, the biochemical inhibition revealed by these two plants appeared to be an important factor. The growth ofPellionia scabra seedlings, transplanted from the study site into greenhouse pots, was evidently suppressed by the aqueous leachate of bamboo leaves but was stimulated by that of conifer leaves. The radicle growth of lettuce, rye grass, and rice plants was also clearly inhibited by the leachate and aqueous extracts of bamboo leaves but not by those of conifer leaves. Six phytotoxins,o-hydroxyphenylacetic,p-hydroxybenzoic,p-coumaric, vanillic, ferulic, and syringic acids were found in the aqueous leachate and extracts of leaves and alcoholic soil extracts ofP. edulis, while the first three compounds were absent in the extracts ofC. japonica. The phytotoxicities of extracts were correlated with the phytotoxins present in both leaves and soils. The understory species might be variously tolerant to the allelopathic compounds produced by the two plants, resulting in a differential selection of species underneath. Therefore, comparative allelopathic effects ofPhyllostachys edulis andCryptomeria japonica may play significant roles in regulating the populations of the understories.Paper No. 253 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported by the National Science Council of the Republic of China.  相似文献   

2.
The aqueous extracts of decomposing rice residues in soil exhibited inhibition on the radicle growth of lettuce and rice seeds and the growth of rice seedlings. The phytotoxicity was found in extracts obtained from the early stage of decomposition (first month), and gradually declined thereafter. The inhibition was also found in extracts obtained from rice fields, and was persistent for 4 months. The root initiation of hypocotyl cuttings of mungbeans was suppressed by extracts of decaying rice residues and extracts obtained from paddy soil. Five phytotoxins,p-hydroxybenzoic,p-coumaric, vanillic, ferulic, ando-hydroxyphenylacetic acids, and several unknowns were found in the decomposing rice residues under waterlogged conditions. At 25 ppm,o-hydroxyphenylacetic acid revealed significant inhibition on the radicle growth of rice and lettuce seeds and suppressed root initiation of mungbean seedlings. It was concluded that the growth of rice seedlings was retarded by decaying rice residues in soil; thus, this appeared to be an autointoxication phenomenon.Paper No. 176 of the Scientific Journal Series, Institute of Botany, Academia Sinica. This study was financially supported by the National Science Council, the Republic of China.  相似文献   

3.
Allelopathic research of subtropical vegetation in Taiwan   总被引:2,自引:0,他引:2  
Leucaena leucocephala plantations in Kaoshu, southern Taiwan, exhibit, after several years of growth, a unique pattern of weed exclusion beneathLeucaena canopy. The pattern has been observed in manyLeucaena plantations in Taiwan and is particularly pronounced in the area where a substantial amount ofLeucaena litter has accumulated on the ground. Field data showed that the phenomenon was primarily not due to physical competition involving light, soil moisture, pH, and nutrients. Instead, aqueous extracts ofLeucaena fresh leaves, litter, soil, and seed exudate showed significantly phytotoxic effects on many test species, including rice, lettuce,Acacia confusa, Alnus formosana, Casuarina glauca, Liquidambar formosana, andMimosa pudica. However, the extracts were not toxic to the growth ofLeucaena seedlings. The decomposing leaves ofLeucaena also suppressed the growth of the aforementioned plants grown in pots but did not inhibit that ofLeucaena plants. By means of paper and thin-layer chromatography, UV-visible spectrophotometry, and high-performance liquid chromatography, 10 phytotoxins were identified. They included mimosine, quercetin, and gallic, protocatechuic,p-hydroxybenzoic,p-hydroxyphenylacetic, vanillic, ferulic, caffeic, andp-coumaric acids. The mature leaves ofLeucaena possess about 5% dry weight of mimosine, the amount varying with varieties. The seed germination and radicle growth of lettuce, rice, and rye grass were significantly inhibited by aqueous mimosine solution at a concentration of 20 ppm, while that of the forest species mentioned was suppressed by the mimosine solution at 50 ppm or above. However, the growth ofMiscanthus floridulus andPinus taiwanensis was not suppressed by the mimosine solution at 200 ppm. The seedlings ofAgeratum conzoides died in mimosine solution at 50 ppm within seven days and wilted at 300 ppm within three days. It was concluded that the exclusion of understory plants was evidently due to the allelopathic effect of compounds produced byLeucaena. The allelopathic pattern was clearly shown in the area with a heavy accumulation ofLeucaena leaf litter, which was a result of drought and heavy wind influence.Paper No. 292 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported in part by a grant to C.H. Chou. Part of this paper was a MS thesis submitted by Y.L. Kuo to the Department of Forestry, National Taiwan University, and presented at the Seminar on Allelochemicals and Pheromones, sponsored by the CCNAA and AIT on June 21–26, 1982.  相似文献   

4.
Phenolic compounds have been identified as the most common allelochemicals produced by higher plants. Inhibitions of cinnamic acid, its related phenolic derivatives, and abscisic acid (ABA) on seedling growth and seed germination of lettuce were studied.trans-Cinnamic acid, ando-,m-, andp-coumaric acids inhibited the growth of etiolated seedlings of lettuce at concentrations higher than 10–4 M and seed germination above 10–3 M. Coumarin inhibited seedling growth and seed germination at 10–5 M or above. Chlorogenic acid inhibited seedling growth above 10–4 M, but did not inhibit seed germination at 10–5–5×10–3 M. Low concentrations (below 10–3 M) of caffeic and ferulic acids promoted the elongation of hypocotyls, but higher concentrations (over 10–3 M) inhibited seedling growth and seed germination. These phenolic compounds and abscisic acid had additive inhibitory effects both on seedling growth and seed germination. The inhibition on lettuce was reversed by caffeic and ferulic acids at concentrations lower than 10–3 M except for the inhibition of germination by coumarin. These results suggest that in naturetrans-cinnamic acid,o-, m-, p-coumaric acids, coumarin, and chlorogenic acid inhibit plant growth regardless of their concentration. However, caffeic and ferulic acids can either promote or inhibit plant growth according to their concentration.  相似文献   

5.
Aqueous extracts of fresh leaves and organic soil of northern sheep laurel (Kalmia angustifolia var.angustifolia) were found to be inhibitory to the growth of black spruce (Picea mariana) germinants. Primary root growth of black spruce was more affected by the extracts than was shoot growth. The growth inhibition caused by the leaf extract was most pronounced under acidic conditions (pH 3–4). The aqueous extract ofKalmia leaves contained ferulic, vanillic, syringic, gentisic,m-coumaric,p-coumaric,o-hydroxyphenylacetic, andp-hydroxybenzoic acids as well as some other unknown compounds. These compounds were isolated from the aqueous extract ofKalmia leaves by ethyl acetate extraction and identified using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Bioassay indicated that the overall toxicity of the phenolic compounds to black spruce appeared to increase in the order ofo-hydroxyphenylacetic,p-hydroxybenzoic, vanillic,p-coumaric, gentisic, syringic, ferulic, andm-coumaric acids.  相似文献   

6.
Aqueous extracts ofNuphar lutea (L.) Sibth. & Sm. leaves (blades plus petioles) and roots plus rhizomes were tested for allelopathic activity using lettuce seedling andLemna minor L. assay systems. The 12.5, 25, 125, and 250 parts per thousand (ppt) treatments of both extracts killed the lettuce seedlings. At 2.5 ppt of extract, radicle growth of lettuce was 29% of the control for leaves and 31% of the control for roots plus rhizomes.Lemna minor frond number was reduced to 34% of the control by the 25 ppt leaf extract and to 43% of the control by the 25 ppt roots plus rhizomes extract.L. minor was killed by concentrations of 125 ppt and above of both plant part extracts. As expected, the frond number and total chlorophyll content measured by theL. minor assay were highly correlated. Osmotic potentials below 143 mOsmol/kg had no influence onL. minor growth. Neither the osmotic potential nor the pH of the undiluted extracts ofN. lutea were in the range known to influence the growth of either lettuce seedlings orL. minor. Nuphar lutea extracts were many times more inhibitory than 16 other hydrophytes we previously examined.  相似文献   

7.
Aqueous extracts ofLantana camara L. leaves inhibited ryegrass (Lolium multiflorum Lam.) germination and seedling growth. Phytotoxic compounds were fractionated from crude aqueous extracts and fractions were evaluated for their phytotoxicity. Inhibition was most pronounced with the alkaline and acid hydrolysates. Plant inhibition by the crude extract reflected a complex interaction of numerous individual components of diverse chemical compositions and potencies. Presumptive identification of the individual components was accomplished with high-performance liquid chromatography (HPLC). Thirteen phenolic compounds were identified, and most of these compounds were phytotoxic to ryegrass seedlings. Radicle elongation was more sensitive to the toxins than shoot elongation.Florida Agricultural Experiment Station Journal Series No. 7906.  相似文献   

8.
In laboratory tests the allelopathic potential ofErica vagans, Calluna vulgaris, andDaboecia cantabrica was determined. Aqueous extracts of flowers ofD. cantabrica and leaves ofC. vulgaris inhibit root and hypocotyl growth of red clover, the former causing 51% inhibition of germination. Intact aerial parts of the Ericaceae here studied drastically reduced the growth of red clover and 100% inhibition of germination was caused by flowers ofD. cantabrica. Inhibition of aqueous extracts remains after Chromatographic separation, and two well-defined inhibition zones may be observed. Hydrosoluble organic compounds (phenol-like compounds) could probably be responsible for the inhibitions detected.  相似文献   

9.
The growth ofZoysia japonica surroundingAnthoxanthum odoratum onZoysia-grassland in Japan was investigated in June 1994. The stem density ofZ. japonica tended to decrease with short distances between twoA. odoratum plants. This showed that the growth ofZ. japonica surroundingA. odoratum was reduced. Basic, neutral, and acidic fractions extracted fromA. odoratum plants inhibited the seedling growth of lettuce. In particular the neutral fraction showed the strongest activity among the three fractions. The main inhibitory compound obtained atR f 0.6–0.7, on the thin-layer chromatogram of the neutral fraction, was isolated and identified as coumarin by means of GC-MS. Coumarin solution inhibited seedling growth ofZ. japonica in low concentrations but, conversely, promoted seedling growth ofA. odoratum. Coumarin was contained in all parts ofA. odoratum and its concentration varied with the season and from one individual plant to another. In particular, coumarin was highly concentrated in the leaves, accounting for more than 2.5% of dry leaf weight in June. The inhibitory effect of these aqueous extracts was correlated to the amount of coumarin inA. odoratum leaves and cournarin was considered to be the main inhibitory compound.  相似文献   

10.
In an investigation of potential chemical activity of fire-sensitive shrubs in Florida's sand pine scrub community, bioassays of foliar washes ofConradina canescens showed significant inhibitory activity on three native grasses that are known to fuel frequent surface fires; inhibition was concentrated seasonally in spring and summer. Application of runoff fromConradina leaves to one of the grasses caused a 50% reduction in growth over a 20-week period. Isolation of the biologically active fractions from the fresh leaves ofC. canescens yielded numerous monoterpenes, a number of which were identified from a GC-MS reference library and/or MS comparison to authentic compounds: 11 from the diethyl ether extract, 11 from steam distillation, and four from the foliar leaf wash. Numerous other monoterpenes present in the extractions were unknown. The terpenoid fraction completely inhibited seed germination of one of the native grasses and of lettuce. Saturated aqueous solutions of nine of the monoterpenes inhibited germination and radicle growth of two native grasses. SEM views of the leaf surfaces ofConradina reveal secretory trichomes that appear to be the source of the monoterpenes as well as the triterpene, ursolic acid. The biological activity ofC. canescens as a fire-sensitive component of the scrub community is reviewed in light of the chemical evidence.  相似文献   

11.
Both the neutral and acidic fractions of the acetone extract of yellow fieldcress (Kireha-inugarashi,Rorippa sylvestris Besser) inhibited lettuce seed germination. Salicylic,p-hydroxybenzoic, vanillic, and syringic acid were identified in the acidic fraction. In the neutral fraction, hirsutin (8-methylsulfinyloctyl isothiocyanate), 4-methoxyindole-3-acetonitrile, and pyrocatechol were identified. Bioassay using a root exudate recirculating system showedR. sylvestris during flowering inhibited the lettuce seedling growth. Hirsutin (13g/plant/day) and pyrocatechol (9.3g/plant/day) were the major compounds released into the rhizosphere. Several combinations of pyrocatechol,p-hydroxybenzoic acid, vanillic acid, and hirsutin reduced lettuce seedling growth. These compounds seemed to be allelochemicals.  相似文献   

12.
The allelopathic potential of eight aquatic plants associated with wild rice was investigated using lettuce and wild rice seedling bioassays. Rhizome aqueous extracts of Scirpus acutus, Potamogeton natans, Nymphaea odorata, Nuphar variegatum; shoot extract of Eleocharis smallii; whole plant extract of Myriophyllum verticillatum; and leaf extract of P. natans significantly reduced the root length of lettuce and wild rice seedlings. The lettuce seedling bioassay was more sensitive than the wild rice bioassay. Shoot growth was less affected than the root growth. Water extract of sediments associated with the aquatic plants had little growth inhibitory effect on wild rice. Our study did not yield any conclusive evidence that the wild rice-associated aquatic plants have allelopathic effects on wild rice. We emphasize the use of target species as a bioassay material in allelopathic studies. Further investigation on allelopathic effects of lake sediments associated with the neighboring plants of wild rice is necessary to evaluate their ecological significance.  相似文献   

13.
Experiments were conducted under controlled conditions to investigate the apparent allelopathic effects of sudex [Sorghum bicolor (L.) Moench ×Sorghum Sudanese (P.) Stapf, cv. FFR 201] on weed and vegetable species. Allelopathic potential, as measured by radicle elongation of herbaceous indicator species, decreased with increasing sudex age. Greatest potential allelopathic activity of sudex shoot tissue was observed when sudex was collected at 7 days of age. Small-seeded broadleaf species were more inhibited in the presence of sudex shoot tissue than were grass species. Two major phytoinhibitors were isolated from aqueous extracts of sudex shoot material by partitioning with diethyl ether, followed by thin-layer and liquid column chromatography. Phytoinhibitors were identified asp-hydroxybenzoic acid andp-hydroxybenzaldehyde, potentially the enzymatic breakdown products of the cyanogenic glycoside dhurrin. The I50 values of these compounds using a cress (Lepidium sativum L.) seed bioassay were 140 and 113 g/ml for the acid and aldehyde, respectively. Sudex tissue collected at 7 days of age possessed a greater percentage of these phytoinhibitors on a per gram basis than did older sudex tissue. As sudex tissue age increased, the percentage ofp-hydroxybenzaldehyde in ether extracts of tissue also increased, while the percentage ofp-hydroxybenzoic acid decreased.Journal article No. 88-10-163 of the Kentucky Agricultural Experiment Station.  相似文献   

14.
Regeneration failure ofPicea abies in a subalpine bilberry-spruce forest was studied in relation to phenolic compounds, their occurrence and toxicity. Germination bioassays with natural leachates of bilberry (Vaccinium myrtillus) and spruce showed negative effects on root elongation of spruce seedlings. Growth bioassays on litter and humus demonstrated inhibitory effects of these organic layers.p-Hydroxyacetophenone, a spruce-specific metabolite, was isolated in spruce throughfall (10–6 M), in water extracts of litter (between 1 and 8 µg/g dry wt) and organic layer (less than 1 µg/g dry wt) in addition to tannins and several common phenolic acids. Potential relationships between vegetation cover and phenolic pattern of the soil are discussed, since organic layers under bilberry heath exhibited higher amounts of phenolic acids and tannins than those under spruce.p-Hydroxyacetophenone and caffeic acid reduced, even at 5 × 10–5 M, spruce seedling growth, especially root development, with additive effects for these two monomers. Autotoxicity involving spruce trees and allelopathy of understory species, mediated byp-hydroxy-acetophenone and other phenolic compounds, including tannins, deserves further attention in regeneration studies.  相似文献   

15.
Laboratory and greenhouse bioassays were used to test for inhibitory effects of senescent and decomposed leaves and aqueous extract from bilberry (Vaccinium myrtillus L.) against seed germination and seedling growth of aspen (Populus tremula L.), birch (Betula pendula Roth.), Scots pine (Pinus sylvestris L.), and Norway spruce [Picea abies (L.) Karst.]. Aqueous extracts from bilberry leaves were inhibitory to aspen seed germination and seedling growth and also induced root damage and growth abnormalities. Addition of activated carbon removed the inhibitory effects of extracts. Senescent leaves reduced pine and spruce seed germination, but rinsing of seeds reversed this inhibition. Senescent leaves were more inhibitory than decomposed leaf litter, suggesting that the inhibitory compounds in bilberry leaves are relatively soluble and released at early stages during decomposition. Spruce was generally less negatively affected by litter and aqueous extracts than the other tested species. This study indicates that chemical effects of bilberry litter have the potential to inhibit tree seedling recruitment, but these effects were not consistently strong. Phytotoxicity is unlikely to be of critical importance in determining success for spruce seedling establishment.  相似文献   

16.
Growth inhibitory effects of aqueous extracts and leachates of leaves and tubers of Cyperus rotundus L. were investigated by using rice (Oryza sativa L.) seedling as a bioassay material. Both the extracts and leachates of Cyperus were inhibitory to the growth of rice seedlings. Growth inhibition was more pronounced in the presence of aqueous extracts than the leachates. The extract and leachate of leaves had higher total phenolic contents than those of the tubers. Soil amendment with fresh leaves of Cyperus reduced plant height, leaf area, and root and shoot weight of rice seedlings. Total phenolic content was higher in soil amended with fresh Cyperus leaves than the unamended control soil. Nineteen compounds were tentatively identified from the aqueous extracts of leaves and tubers by ethyl acetate extraction followed by gas chromatography–mass spectroscopy (GC-MS). Dicarboxylic, phenolic, and fatty acids were the major compounds. Our results suggest that Cyperus may affect the growth and establishment of rice seedlings after sowing or transplanting, especially when Cyperus plants are mixed in soil during land preparation by ploughing in rain-fed rice culture.  相似文献   

17.
The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20–25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone < soil + fertilizer < soil + straw < soil + straw + fertilizer. Growth inhibition of lettuce or rice seedlings was also at the highest at the temperature range of 25–30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.Paper No. 242 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China. This study was supported by a project under the R.O.C.-U.S.A. Cooperative Science Program.  相似文献   

18.
Petrol and ethanolic extracts of six asteraceous weeds were added to artificial diets to screen for growth inhibition and mortality of the variegated cutworm,Peridroma saucia (Hbn). Petrol and ethanolic extracts ofArtemisia tridentata andChamomilla suaveolens and ethanolic extracts ofChrysothamnus nauseosus andCentaurea diffusa severely inhibited larval growth at five times the natural concentrations. The twoC. suaveolens extracts and the ethanol extract ofA. tridentata were active at the natural concentration (100%) and were further examined at 20, 40, 60, and 80% of this level. Inhibition of larval growth was directly related to concentration for each of the three extracts tested. EC50s (effective concentration to inhibit growth by 50% relative to controls) for the three extracts were 36–42% of the naturally occurring level in the plants. Nutritional indices were calculated for secondinstarP. saucia feeding on the activeA. tridentata EtOH extract and the petrol extract fromC. suaveolens. Addition of the activeA. tridentata EtOH or theC. suaveolens petrol extract to the diet resulted in significant reduction in the relative growth rate of larvae, although theA. tridentata extract was much more inhibitory. Dietary utilization was significantly lower for larvae fed theA. tridentata EtOH extract.  相似文献   

19.
Water and solvent extracts from the aerial tissues ofCentaurea maculosa, spotted knapweed, inhibited the root growth of lettuce. Column chromatography and lettuce bioassay of a chloroform extract led to the isolation of cnicin, a sesquiterpene lactone. Pure cnicin was bioassayed at 0, 1, 2, 4, 6, 8, and 10 mg/5 ml water with lettuce, created wheatgrass, bluebunch wheatgrass, rough fescue, western larch, lodgepole pine, and spotted knapweed. Germination was inhibited at one or more concentrations for all species except lodgepole pine and spotted knapweed. Growth, particularly of the roots, was retarded between 1 and 4 mg of cnicin. Lettuce, bluebunch wheatgrass, and spotted knapweed were inhibited significantly at all concentrations tested.  相似文献   

20.
Pinus ponderosa accounted for more than 98% of all tree and shrub stratum stems in a climax community with low herb coverage and aboveground biomass, 35% and 60 g/m2, respectively. Because of our previous report that nitrification and nitrifying bacteria in the same community were allelopathically inhibited, we speculated that the pine-produced allelochemics might also directly influence the development and growth of the herb stratum. In most cases decaying needles, needle leachate, and field soils significantly reduced germination and radicle growth ofAndropogon gerardii andA. scoparius, pine-associated herbaceous species. Additionally, growth ofAndropogon scoparius seedling radicles was reduced 28–56% by pine needle extracts, 33% by pine bark extracts, and 67% by soil hydrolysate extracts.Andropogon seed germination was reduced 20–25% by pine needles and soil. Phytotoxins identified in various plant parts and associated soils were caffeic acid, chlorogenic acid, quercetin, and condensed tannins. Pine needle water and soil hydrolysate extracts were most inhibitory to the radicle growth of the test species. Thus it appears that the limited growth of the herbaceous stratum in the pine community may be accounted for, in part, by allelopathy. Such allelopathic interactions may have an adaptive ecological significance in various forest and other plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号