首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem of representing planar graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear-time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges having at most three slopes and with all vertices lying on an O(nO(n) grid.  相似文献   

2.
We present an algorithm for finding optimum partitions of simple monotone rectilinear polygons into star-shaped polygons. The algorithm may introduce Steiner points and its time complexity isO(n), wheren is the number of vertices in the polygon. We then use this algorithm to obtain anO(n logn) approximation algorithm for partitioning simple rectilinear polygons into star-shaped polygons with the size of the partition being at most six times the optimum.  相似文献   

3.
Ak-extremal point set is a point set on the boundary of ak-sided rectilinear convex hull. Given ak-extremal point set of sizen, we present an algorithm that computes a rectilinear Steiner minimal tree in timeO(k 4 n). For constantk, this algorithm runs inO(n) time and is asymptotically optimal and, for arbitraryk, the algorithm is the fastest known for this problem.  相似文献   

4.
We present an algorithm for finding optimum partitions of simple monotone rectilinear polygons into star-shaped polygons. The algorithm may introduce Steiner points and its time complexity isO(n), wheren is the number of vertices in the polygon. We then use this algorithm to obtain anO(n logn) approximation algorithm for partitioning simple rectilinear polygons into star-shaped polygons with the size of the partition being at most six times the optimum.  相似文献   

5.
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take Θ(n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].  相似文献   

6.
We show that vertex guarding a monotone polygon is NP-hard and construct a constant factor approximation algorithm for interior guarding monotone polygons. Using this algorithm we obtain an approximation algorithm for interior guarding rectilinear polygons that has an approximation factor independent of the number of vertices of the polygon. If the size of the smallest interior guard cover is OPT for a rectilinear polygon, our algorithm produces a guard set of size O(OPT 2).  相似文献   

7.
Ak-extremal point set is a point set on the boundary of ak-sided rectilinear convex hull. Given ak-extremal point set of sizen, we present an algorithm that computes a rectilinear Steiner minimal tree in timeO(k 4 n). For constantk, this algorithm runs inO(n) time and is asymptotically optimal and, for arbitraryk, the algorithm is the fastest known for this problem.  相似文献   

8.
In this paper we propose two new multilayer grid models for VLSI layout, both of which take into account the number of contact cuts used. For the first model in which nodes “exist” only on one layer, we prove a tight area × (number of contact cuts) = Θ(n 2) tradeoff for embeddingn-node planar graphs of bounded degree in two layers. For the second model in which nodes “exist” simultaneously on all layers, we give a number of upper bounds on the area needed to embed groups using no contact cuts. We show that anyn-node graph of thickness 2 can be embedded on two layers inO(n 2) area. This bound is tight even if more layers and any number of contact cuts are allowed. We also show that planar graphs of bounded degree can be embedded on two layers inO(n 3/2(logn)2) area. Some of our embedding algorithms have the additional property that they can respect prespecified grid placements of the nodes of the graph to be embedded. We give an algorithm for embeddingn-node graphs of thicknessk ink layers usingO(n 3) area, using no contact cuts, and respecting prespecified node placements. This area is asymptotically optimal for placement-respecting algorithms, even if more layers are allowed, as long as a fixed fraction of the edges do not use contact cuts. Our results use a new result on embedding graphs in a single-layer grid, namely an embedding ofn-node planar graphs such that each edge makes at most four turns, and all nodes are embedded on the same line.  相似文献   

9.
Louis Ibarra 《Algorithmica》2010,58(3):637-678
We present the first dynamic graph algorithm for recognizing interval graphs. The algorithm runs in O(nlog?n) worst-case time per edge deletion or edge insertion, where n is the number of vertices in the graph. The algorithm uses a new representation of interval graphs called the train tree, which is based on the clique-separator graph representation of chordal graphs. The train tree has a number of useful properties and it can be constructed from the clique-separator graph in O(n) time.  相似文献   

10.
Consider a collection of disjoint polygons in the plane containing a total ofn edges. We show how to build, inO(n 2) time and space, a data structure from which inO(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed inO(n 2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed inO(n 2) time, improving earlierO(n 2 logn) results.  相似文献   

11.
12.
13.
In this paper we consider the following problem of computing a map of geometric minimal cuts (called MGMC problem): Given a graph G=(V,E) and a planar rectilinear embedding of a subgraph H=(V H ,E H ) of G, compute the map of geometric minimal cuts induced by axis-aligned rectangles in the embedding plane. The MGMC problem is motivated by the critical area extraction problem in VLSI designs and finds applications in several other fields. In this paper, we propose a novel approach based on a mix of geometric and graph algorithm techniques for the MGMC problem. Our approach first shows that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Our algorithm for identifying geometric minimal cuts runs in O(n 3logn(loglogn)3) expected time which can be reduced to O(nlogn(loglogn)3) when the maximum size of the cut is bounded by a constant, where n=|V H |. Once geometric minimal cuts are identified we show that the problem can be reduced to computing the L Hausdorff Voronoi diagram of axis aligned rectangles. We present the first output-sensitive algorithm to compute this diagram which runs in O((N+K)log2 NloglogN) time and O(Nlog2 N) space, where N is the number of rectangles and K is the complexity of the Hausdorff Voronoi diagram. Our approach settles several open problems regarding the MGMC problem.  相似文献   

14.
We present a parallel algorithm for performing boolean set operations on generalized polygons that have holes in them. The intersection algorithm has a processor complexity of O(m2n2) processors and a time complexity of O(max(2log m, log2n)), where m is the maximum number of vertices in any loop of a polygon, and n is the maximum number of loops per polygon. The union and difference algorithms have a processor complexity of O(m2n2) and time complexity of O(log m) and O(2log m, log n) respectively. The algorithm is based on the EREW PRAM model. The algorithm tries to minimize the intersection point computations by intersecting only a subset of loops of the polygons, taking advantage of the topological structure of the two polygons. We believe this will result in better performance on the average as compared to the worst case. Though all the algorithms presented here are deterministic, randomized algorithms such as sample sort can be used for the sorting subcomponent of the algorithms to obtain fast practical implementations.  相似文献   

15.
We give the first optimal algorithm that computes a minimum cycle basis for any weighted outerplanar graph. Specifically, for any n-node edge-weighted outerplanar graph G, we give an O(n)-time algorithm to obtain an O(n)-space compact representation Z(C) for a minimum cycle basis C of G. Each cycle in C can be computed from Z(C) in O(1) time per edge. Our result works for directed and undirected outerplanar graphs G.  相似文献   

16.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

17.
The maximum planarization problem is to find a spanning planar subgraph having the largest number of edges for a given graph. In this paper, we propose a self-stabilizing algorithm to solve this problem for complete bipartite networks. The proposed algorithm finds the maximum planar subgraph of 2n−4 edges in O(n) rounds, where n is the number of nodes.  相似文献   

18.
We develop anO(n) algorithm to construct a rectangular dual of ann-vertex planar triangulated graph.  相似文献   

19.
In this paper, we first develop a parallel algorithm for computingK-terminal reliability, denoted byR(GK), in 2-trees. Based on this result, we can also computeR(GK) in partial 2-trees using a method that transforms, in parallel, a given partial 2-tree into a 2-tree. Finally, we solve the problem of finding most vital edges with respect toK-terminal reliability in partial 2-trees. Our algorithms takeO(log n) time withC(m, n) processors on a CRCW PRAM, whereC(m, n) is the number of processors required to find the connected components of a graph withmedges andnvertices in logarithmic time.  相似文献   

20.
Let s be a point source of light inside a polygon P of n vertices. A polygonal path from s to some point t inside P is called a diffuse reflection path if the turning points of the path lie on edges of?P. A?diffuse reflection path is said to be optimal if it has the minimum number of reflections on the path. The problem of computing a diffuse reflection path from s to t inside P has not been considered explicitly in the past. We present three different algorithms for this problem which produce suboptimal paths. For constructing such a path, the first algorithm uses a greedy method, the second algorithm uses a transformation of a minimum link path, and the third algorithm uses the edge–edge visibility graph of?P. The first two algorithms are for polygons without holes, and they run in O(n+klogn) time, where k denotes the number of reflections in the constructed path. The third algorithm is for polygons with or without holes, and it runs in O(n 2) time. The number of reflections in the path produced by this third algorithm can be at most three times that of an optimal diffuse reflection path. Though the combinatorial approach used in the third algorithm gives a better bound on the number of reflections on the path, the first and the second algorithms stand on the merit of their elegant geometric approaches based on local geometric information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号