首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have realized high-quality GaInAs-GaAs quantum wells (QWs) with high strain of over 2% on GaAs (311)B substrate for a polarization controlled vertical-cavity surface-emitting laser (VCSEL). By increasing the In composition in GaInAs, the optical anisotropy in photoluminescence (PL) intensity was increased. The anisotropy of 50% was obtained at 1.15 μm emission wavelength. We have demonstrated edge-emitting lasers and VCSELs emitting at over 1.1 μm on GaAs (311)B substrate for the first time. The 1.15-μm edge-emitting laser showed a characteristic temperature of 210 K and the threshold current density of 410 A/cm2. The threshold current and lasing wavelength of VCSELs are 0.9 mA and 1.12 μm, respectively. The orthogonal polarization suppression ratio was 25 dB and CW operation up to 170°C without a heat sink was achieved  相似文献   

2.
The performance of a GaAs based heterojunction phototransistors (HPTs) using an n-p-i-n configuration, where the absorption is provided by InGaAs quantum wells (QWs) have been studied. Structures with differing numbers of QW were investigated. This allowed the tradeoff between the benefits of increased light absorption and the drawbacks of increased lattice relaxation, caused by the mis-match between InGaAs and the GaAs substrate, to be examined. All the HPT's investigated showed responsivities (A/W) far larger than unity, as well as large wavelength tolerance, for example 44 A/W±15% from 950-970 nm, for 10 μW incident optical. Electrical common-emitter current gains, of up to 3000 were measured for our HPT's and then confirmed by subsequent HBT measurements. Small relaxation levels (<10%) had no significant detrimental effects, allowing a large improvement in HPT performance. More heavily relaxed HPTs showed a degradation in both the inherent photodetector and transistor action, though this was not catastrophic in nature. A simple simulation of the results is carried out, suggesting that the dislocations adversely effect the carrier transport across the collector region, and also reduce the minority carrier diffusion length in the base  相似文献   

3.
We have demonstrated an oxide confinement polarization controlled vertical-cavity surface-emitting laser (VCSEL) grown on a GaAs (311)B substrate. The polarization state was well controlled along the [2¯33] crystal direction due to an anisotropic gain in the (311)B plane. We fabricated a small oxide aperture VCSEL with a threshold of 260 μA and realized single-transverse mode and single-polarization operation for the first time. The sidemode suppression ratio (SMSR) was 35 dB and the orthogonal polarization suppression ratio (OPSR) was 25 dB. In addition, we have measured polarization and transverse mode characteristics of multi- and single-transverse mode devices under high-speed modulation. In the multimode device of 12 μm×12 pm oxide aperture, we have achieved stable polarization operation of over 25-dB OPSR up to 10 Gb/s and have observed no power penalty due to polarization instability under 2.5-Gb/s pseudorandom modulation. The single-mode device showed stable single-transverse mode and polarization under the modulation conduction up to 5 GHz of sinusoidal modulation. SMSR and OPSR were over 30 and 10 dB, respectively  相似文献   

4.
We describe a robust manufacturing process for single-mode photonic crystal (PhC) vertical-cavity surface-emitting lasers (VCSELs). Various PhC designs are investigated to determine endlessly single-mode designs, whereby the same PhC design yields single-mode operation for three different wavelengths (780, 850, and 980 nm). The fabrication of the PhC pattern is based on a self-aligned optical lithography process. The fabrication process results in VCSELs with a maximum output power greater than 1 mW under continuous-wave (CW) operation with side-mode suppression ratio greater than 35 dB. We also show microfluidic laser structures that are enabled by our fabrication process, which integrate fluid channels into VCSELs. Optical and electrical properties of these microfluidic VCSELs are investigated with and without fluids present under CW and pulsed operation. A shift of the lasing wavelength is found with fluid insertion.  相似文献   

5.
Four-wave mixing (FWM) in semiconductor optical amplifiers is an attractive mechanism for wavelength conversion in wavelength-division multiplexed (WDM) systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented. Included are single-channel conversion over 18 nm of shift at 10 Gb/s, multichannel conversion, and cascaded conversions. In addition time resolved spectral analysis of wavelength conversion is presented  相似文献   

6.
Oxide-confined vertical-cavity surface-emitting laser diodes (VCSELs) are fabricated for applications in high-performance optical interconnects. Both 980-nm as well as 850-nm wavelength devices in one- and two-dimensional arrays are investigated. Noise properties of single- and multimode devices under different operation conditions are relative intensity noise of single-mode devices can be as low as -150 dB/Hz at output powers of about 1 mW and feedback levels up to -30 dB. Data rates up to 12.5 Gb/s with bit error rates below 10-11 are achieved with VCSELs showing stable single-mode emission at large-signal modulation, combined with modulation bandwidths exceeding 10 GHz. Arrays with 4×8 elements flip-chip mounted on Si CMOS driver chips ready for use in parallel data transmission systems are presented  相似文献   

7.
The influence of strain on lasing performances of Al-free strained-layer Ga(In)As(P)-GaInAsP-GaInP quantum-well lasers is investigated for the first time over a large emission range of 0.78<λ<1.1 μm. GaAsP and InGaAs are used for tensile and compressive-strained quantum-well layers, respectively, while GaAs and GaInAsP lattice-matched to GaAs are applied for unstrained quantum wells. The laser structures were prepared by using gas-source molecular beam epitaxy, and broad-area and ridge waveguide Fabry-Perot laser diodes were fabricated. This study shows that applying both tensile and compressive strains in the quantum well reduces threshold current density for the Al-free strained-layer quantum-well lasers. However, it was found that the lattice relaxation set a limitation of maximum compressive strain (i.e., maximum lasing wavelength) for the compressive strained InGaAs lasers while the carrier confinement determined the acceptable maximum tensile strain (i.e., minimum lasing wavelength) and lasing performances for the tensile strained GaAsP lasers. Threshold current density as low as 164 A/cm2 has been obtained for 1.4% compressive-strained InGaAs-GaInAsP-GaInP lasers having a 12-nm thick quantum well. However, excellent characteristics, such as low threshold current, high efficiency low internal loss, and high output power, have been achieved for the Al-free strained-layer quantum-well lasers  相似文献   

8.
A stable single-mode operation mechanism in distributed feedback (DFB) lasers with wirelike active regions was theoretically investigated by taking into account "gain matching" between standing wave profiles of each resonant mode and periodic active regions. As a result, it was clarified that the resonant modes at the longer wavelength side of the stopband have higher modal gain than those at the shorter wavelength side and that the oscillation takes place at the longer wavelength side resonant mode nearest to the stopband. The influence of the cleaved facet with respect to the grating phase was also analyzed. The measured spectral properties of buried heterostructure GaInAsP/InP DFB lasers consisting of wirelike active regions, such as a subthreshold gain spectrum and the lasing wavelength with respect to the stop band, agreed well with theoretical results. Finally, it was confirmed that a stable single-mode operation was preserved even after a room temperature continuous wave aging of 7300 h at bias current of around 10/spl times/ the threshold.  相似文献   

9.
Recent progress on time-division multiplexed (TDM) and wavelength-division multiplexed (WDM) soliton transmission is described, in which dispersion management (DM) plays an important role in increasing the power margin and the dispersion tolerance. The characteristics of the DM soliton are compared with those of return-to-zero (RZ) and nonreturn-to-zero (NRZ) pulses. With a small dispersion swing, the system can still be described as an average soliton with a nonlinear Schrodinger equation (NLSE), whereas with a large dispersion swing, the soliton-like steady-state pulse becomes a chirped Gaussian pulse, in which the master equation is closer to a linear Schrodinger equation (LSE) with a parabolic potential well. An in-line modulation scheme up to 80 Gb/s per channel and its two-channel WDM transmission over 10000 km are described. A 640-Gb/s (40 Gb/s×16 channels) WDM soliton transmission over 1000 km is also reported with a DM single-mode fiber, without the use of in-line modulation. Finally, dark soliton transmission at 10 Gb/s over 1000 km is described as a different nonlinear pulse application  相似文献   

10.
We propose a low-crosstalk multichannel wavelength conversion scheme based on a parametric process. Simultaneous wavelength conversion of 25 GHz spaced 103 channel$,times,$10 Gb/s (1.03 Tb/s) wavelength-division multiplexing signals with an 8- and 4-nm guard band is successfully demonstrated by using a quasi-phase-matched lithium niobate waveguide. The method is evaluated both theoretically and experimentally.  相似文献   

11.
GaInNAs: a novel material for long-wavelength semiconductor lasers   总被引:4,自引:0,他引:4  
GaInNAs was proposed and created in 1995 by the authors. It can be grown pseudomorphically on a GaAs substrate and is a light-emitting material having a bandgap energy suitable for long-wavelength laser diodes (1.3-1.55 μm and longer wavelengths). By combining GaInNAs with GaAs or other wide-gap materials that can be grown on a GaAs substrate, a type-I band lineup is achieved and, thus, very deep quantum wells can be fabricated, especially in the conduction band. Since the electron overflow from the wells to the barrier layers at high temperatures can he suppressed, the novel material of GaInNAs is very attractive to overcome the poor temperature characteristics of conventional long-wavelength laser diodes used for optical fiber communication systems. GaInNAs with excellent crystallinity was grown by gas-source molecular beam epitaxy in which a nitrogen radical was used as the nitrogen source. GaInNAs was applied in both edge-emitting and vertical-cavity surface-emitting lasers (VCSELs) in the long-wavelength range. In edge-emitting laser diodes, operation under room temperature continuous-wave (CW) conditions with record high temperature performance (T0=126 K) was achieved. The optical and physical parameters, such as quantum efficiency and gain constant, are also systematically investigated to confirm the applicability of GaInNAs to laser diodes for optical fiber communications. In a VCSEL, successful lasing action was obtained under room-temperature (RT) CW conditions by photopumping with a low threshold pump intensity and a lasing wavelength of 1.22 μm  相似文献   

12.
We have demonstrated a UV-laser diode with a lasing wavelength of 350.9 nm, which has a GaN-AlGaN multiquantum-well (MQW) active layer and was grown on low-dislocation-density Al/sub 0.18/Ga/sub 0.82/N template. The Al/sub 0.18/Ga/sub 0.82/N template was produced by the hetero-epitaxial lateral overgrowth technology on the low-cost sapphire substrate, and has partially low-dislocation density of approximately 2/spl times/10/sup 7/ cm/sup -2/. The lasing operation under pulsed current injection was achieved with the threshold current density of 7.3 kA/cm/sup 2/ and the operating voltage of 10.4 V.  相似文献   

13.
We have successfully fabricated InAs quantum dots (QDs) embedded in a line-defect waveguide in an air-bridge type GaAs photonic-crystal slab (PCS) and observed laser action from optical-pumping. This lasing is found to occur without any optical cavity, such as a set of Fabry-Perot mirrors. Comparison of the observed transmittance spectrum with the calculated band dispersion of the triple-lines defect mode enables us to specify the lasing wavelength as that at the band edge. From this fact, it follows that the distributed feedback mechanism at the band edge with an infinitely small group velocity is responsible for the present lasing.  相似文献   

14.
We propose novel circuits for tunable all-optical wavelength converters with reconfigurable functionality. Circuits for wavelength converters based on cross-gain modulation (XGM) and cross-phase modulation (XPM) in semiconductor optical amplifiers (SOAs) are considered, for both copropagating and counterpropagating pump and probe signals. The circuits use arrayed-waveguide grating multiplexers (AWGMs) to filter and route signals in and out of the SOAs. The AWGM's minimize the component count in the circuits and may lead to future integration of wavelength converters. We experimentally demonstrate a XGM wavelength converter with copropagating pump and probe signals and report its bit-error-rate (BER) performance at 2.5 Gb/s  相似文献   

15.
为了研究倒梯形对称双脊波导脊的结构参数变化对传输特性的影响,在MATLAB环境下应用有限元工具箱PDE进行二次编程,计算了倒梯形对称双脊波导在TE模式下的截止波长和单模带宽,分析研究了倒梯形对称双脊波导截止波长和单模带宽随结构参数的变化。数值结果表明,与相同条件下矩形、梯形脊波导比较,倒梯形脊波导的单模带宽较宽,截止波长最大。  相似文献   

16.
High-temperature operation of 1.3-μm wavelength multiquantum-well (MQW) lasers with an active stripe horizontally tapered over whole cavity, for direct coupling to single-mode fibers (SMFs), are reported. The lasers have reduced the output-beam divergence in a simple structure which does not contain an additional spot-size transformer. To improve high-temperature characteristics, we have investigated the influence of the thickness of separate-confinement-heterostructure layers and the number of quantum wells (QWs) on the threshold current and the output-beam divergence at high temperature. As a result, the fabricated lasers show low-threshold current (~18 mA) and high-slope efficiency (~0.4 mW/mA) with narrow output-beam divergence (~12°) at 85°C. Moreover, we have obtained maximum coupling efficiency of -4.7 dB in a direct coupling to a SMF, and the reliability of longer than 105 h (MTTF) by a lifetime test of over 2000 h at 85°C  相似文献   

17.
An analytical electron microscope was used for direct measurement of the concentration profiles of In1-xGaxAsyP1- y quantum wells (QWs) and barriers grown by molecular beam epitaxy on GaAs substrates. The well and barrier layers had compositional differences on the group III (In/Ga) sublattice only, the group V (As/P) sublattice only, and on both sublattices. These were annealed over a range of temperatures (700-950degC), and the resultant changes in the QW widths and compositional profiles were determined along with the changes in the photoluminescence (PL) emission wavelength. The structures were annealed either uncapped or capped with either a 100-nm-thick layer of low temperature (250degC) grown InGaP (LT-InGaP) or with CVD-grown SiO2. The LT-InGaP layer contains excess phosphorus expected to be present as P-antisite defects. This was used to enhance interdiffusion on the group V sublattice during annealing, producing a blue-shift in PL response. The SiO2 capping leads to outdiffusion of Ga from the top GaAs layer producing additional group III defects that enhance interdiffusion of the group III sublattice. The interdiffusion activation energies and diffusivities were obtained from Arrhenius plots for each of groups III and V QWs profile changes. The compositional profiles of the QW after annealing are used to infer the defects involved in the interdiffusion process on each sublattice.  相似文献   

18.
An etched photonic crystal (PhC) or holey wedge structure induces index confinement into 850-nm implant-confined vertical-cavity surface-emitting lasers (VCSELs) to engineer the spatial overlap between the optical mode and laser gain for improved high-speed operation and reduced relative intensity noise. Large-signal operation of 12.5 Gb/s is achieved with a single transverse-mode PhC VCSEL and 15 Gb/s with a single transverse-mode holey VCSEL. An excessive current diffusion effect is found when the difference between the electrical and optical diameter is large ($ ≫ 4 ;mu$m), which limits the large-signal modulation of single-mode VCSELs. The design rules for optimal single transverse-mode high-speed PhC and holey VCSELs are extracted from a parametric study of their large-signal modulation characteristics.   相似文献   

19.
A multimode waveguide p-i-n photodiode (WGPD) and a distributed baseband amplifier consisting of high-electron mobility transistors (HEMTs) were monolithically integrated on InP substrate using a stacked layer structure for both components. The multimode WGPD has a 3-dB bandwidth of 49 GHz. The distributed baseband amplifier has a 3-dB bandwidth of 47 GHz, though its 0.5-μm gate-length HEMTs have modest cutoff frequencies fT/fmax of 47/100 GHz. The receiver optoelectronic integrated circuit has a bandwidth of 46.5 GHz. It was packaged into a fiber-pig-tailed module, and the WGPD in the module has a high responsivity of 0.62 A/W for 1.55-μm wavelength. The module achieves a sensitivity of -22.7 dBm at 40 Gb/s and exhibits a clear eye-opening at 50 Gb/s  相似文献   

20.
Metalorganic vapor phase epitaxial (MOVPE) growth of GaN on nanopatterned AGOG sapphire substrates was performed, and characteristics of the light-emitting diode (LED) devices grown on patterned sapphire and planar substrates were compared. The nanopatterned sapphire substrates were fabricated by a novel process (AGOG) whereby aluminum nanomesas were epitaxially converted into crystalline $hbox{Al}_{2}hbox{O}_{3}$ via a two-stage annealing process. The GaN template grown on the nanopatterned sapphire substrate was done via an abbreviated growth mode, where a 15-nm thick, low-temperature GaN buffer layer was used, without the use of an etch-back and recovery process during the epitaxy. InGaN quantum wells (QWs) LEDs were grown on the GaN template on the nanopatterned sapphire, employing the abbreviated growth mode. The optimized InGaN QW LEDs grown on the patterned AGOG sapphire substrate exhibited a 24% improvement in output power as compared to LEDs on GaN templates grown using the conventional method. The increase in output power of the LEDs is attributed to improved internal quantum efficiency of the LEDs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号