首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craftwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6–1:1:8 with mass fraction of solid materials 60%–63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7×106 yuan (RMB), only 1/10 of that of traditional paste backfill system. Foundation item: Project (2006BAB02A03) supported by the National Key Technology Research and Development Program; Project (08MX16) supported by Mittal Scientific and Technological Innovation Projects of Central South University during 2008  相似文献   

2.
Laminar natural convection in an enclosure divided by an adiabatic partition on its bottom with two unequal discrete heat sources was investigated numerically. The effect of the partition on the flow structure and heat transfer characteristics in enclosure under asymmetric heating condition was studied. The parameters are the Rayleigh number (1×104Ra≤1×106) and the height of partition (0≤h/H≤0.70). The streamlines are produced for various Rayleigh numbers. The results reflected by variations of the average Nusselt number in terms of the height of partition illustrates the convection heat transfer in the enclosure. The role of the partition is to weaken or cut off the heat removal rate from the strong heat source to the weak heat source. It is analyzed that the optimum height of the partition to break the linkage between the strong and weak heat source increases with increasing Rayleigh number. Foundation item: Project(50408019) supported by the National Natural Science Foundation of China  相似文献   

3.
High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01−10 s−1 and high temperature of 500–1 200 °C. The stress level factor (a), stress exponent (n), structural factor (A) and activation energy (Q) of high temperature plastic deformation process of non-orientated electrical steel in different temperature ranges were calculated by the Arrhenius model. The results show that, with dynamic elevation of deformation temperature, phase transformation from α-Fe to γ-Fe takes place simultaneously during plastic deformation, dynamic recovery and dynamic recrystallization process, leading to an irregular change of the steady flow stress. For high temperature plastic deformation between 500 and 800°C, the calculated values of a, n, A, and Q are 0.039 0 MPa−1, 7.93, 1.9×1018 s−1, and 334.8 kJ/mol, respectively, and for high temperature plastic deformation between 1 050 and 1 200 °C, the calculated values of a, n, A, and Q are 0.125 8 MPa−1, 5.29, 1.0×1028 s−1, and 769.9 kJ/mol, respectively. Foundation item: Project(2005038560) supported by the Postdoctoral Foundation of China; Project(05GK1002-2) supported by Key Program of Hunan Province  相似文献   

4.
A kind of Fe-Co-Ni-Cr-Mo-C alloy was designed for valve seat use. The effects of the quenching temperature, tempering time and tempering temperature on the mechanical properties and microstructure of the alloy were investigated. The results show that the hardness decreases, while tensile strength (σb), transverse rupture strength (σbb) and impact toughness(Kit) increase after the alloy is quenched and tempered. The best complex property (σb, 446 MPa; σbb ,793 MPa; Kic, 2.96 J/cm2 ) can be obtained when the alloy is quenched at 1 100 ℃ and tempered at 650 ℃. The results of X-ray diffraction and energy dispersive X-ray analysis (EDX) show that the major strengthening phases are carbides such as (Fe, Cr)7 C3 and Fe2 MoC. The obvious secondary hardening appears when the alloy is tempered at 550 ℃, which results from the precipitated carbides of Cr and Mo in the alloy from the matrix and the heat-resistant retained austenite .  相似文献   

5.
The distribution of AI(j) and the structural units distribution of Q^iT in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al^3 , such as alkaline and alkaline earth metals, AI will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si^4 and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of Q^iT with chemical composition shift was also extracted, showing that as Ca^2 exists, the distributions of Q^Si, QAl or QT have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)←→AI(4) and Al(5)←→Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AIO4 and location of network modifier with charge-compensated function in aluminosilicate melts.  相似文献   

6.
采用水热辅助的溶胶凝胶法制备纳米钛酸锌(ZnTiO3)光催化剂,以罗丹明B为目标降解物,运用动力学模型分析罗丹明B(RhB)初始浓度对降解效果的影响。通过SEM、XRD、XPS、UV-Vis DRS对ZnTiO3进行表征,并使用自由基捕获试验分析其降解机理。结果表明,ZnTiO3为纯六方相,形貌为类球形,粒径50 nm左右。在催化剂用量为1 g/L、RhB初始浓度为5 mg/L、pH值为3的条件下,光催化反应150 min后,RhB降解率为93.2%。其动力学方程为k=0.132C0-1.253。ZnTiO3光催化剂降解过程中,·OH、h+、·O2-均起到催化作用,产生·OH、h+的量相近且多于·O2-,说明·OH、h+在催化反应中起主要作用。  相似文献   

7.
A stratified rock mass model was founded by FLAC3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σ c of rock sample decreases firstly and then increases; when β is in the range of 20°–30° and 80°–90°, σ c has the largest sensitivity to β; while β falls in the range of 30°–70°, σ c varies little. When ϕ j <β<90° (β j is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while βϕ j or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β⩾ ϕ j and β=90°, which is in more accordance with the real situation. Foundation item: Project (50099620) supported by the National Natural Science Foundation of China  相似文献   

8.
The investigation results of the bonding structure of CaO−SiO2 slag by means of molecular dynamics simulation are presented. The characteristics of partial radial distribution functiong ij(r) are in good agreement with the measurement of X-ray diffraction, and the variation ofQ n with different SiO4 tetrahedra following the change ofX CaO is consistent with the results of Raman spectroscopy. The partial vibrational density of states ΓSi(ω) shows that two bands appear in the range of 636–737 cm−1 and 800–1200 cm−1 respectively which are also consistent with Raman spectroscopy. Project supported by Shanghai Natural Science Foundation.  相似文献   

9.
Constitutivemodelisamathematicalrepresentationofthedeformationresponseofamaterialtoexternallyap pliedloading ,includingenvironmentalfactors .Thepre ciseknowledgeoftheconstitutivebehaviorofthematerialisthefoundationofnumericalsimulationtechnologyofmateri…  相似文献   

10.
The adsorption behavior and mechanism of D113 resin for Dy(III) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+ is 292.7 mg·g−1. The optimum eluant is 0.5 mol·L−1 HCl. The adsorption rate constant is k 298=6.8×10−6s−1. The apparent activation energy of D113 resin for Dy(III) is 14.79 kJ·mol−1. The adsorption behavior of D113 resin for Dy(III) obeys the Freundlich isotherm. The adsorption parameters of thermodynamic are ΔH=14.48 kJ·mol−1, ΔS=54.69 J·mol−1·K−1, ΔG=−1.82 kJ·mol−1.The adsorption mechanism of D113 resin for Dy3+ was confirmed by chemical analysis and IR spectra. Funded by the Natural Science Foundation of Zhejiang Province (No.201027), Foundation of Zhejiang Provincial Education Bureau (No.20040551) and Zhoushan Science Technology Bureau (No.04114)  相似文献   

11.
The current paper focuses on the influence of the process parameters on the peak values of the inter-facial heat transfer coefficient (IHTC) at metal/die interface during high pressure die casting (HPDC) process. A "step shape" casting and AM50 alloy were used during the experiment. The IHTC was de-termined by solving the inverse thermal problem based on the measured temperature inside the die. Results show that the initial die surface temperature (IDST, TDI) has a dominant influence while the casting pressure and fast shot velocity have a secondary influence on the IHTC peak values. By curve fitting, it was found that the IHTC peak value (hmax) changes as a function of the IDST in a manner of hmax =eαTγDI. Such relationship between the IHTC peak value and the IDST can also be found when the casting alloy is ADC12, indicating that this phenomenon is a common characteristic in the HPDC process.  相似文献   

12.
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.  相似文献   

13.
    
A new efficient method for preparing o-L-α-glycerylphosphoryl-L-serine was presented. D-α, β-isopropylidene glycerol was phosphorylated with phenylphosphoryl dichloride and the resulting o-D-α,β-isopropylidene glycerylphenylphosphoryl chloride was esterified with N-tert-butoxycarbonyl-L-serine ethyl ester in the presence of pyridine to give acetone L-α-glycerylphenylphosphoryl-N-tert-butoxycarbonyl-L-serine ethyl ester. Finally, the protective groups were removed by two-step hydrolysis while strictly controlling pH value. The reaction to produce (1, 2), (5, 6)-diisopropylidene-D-mannitol, which is the key precursor for the preparation of D-α, β-isopropylidene glycerol, was monitored by using gas chromatography-mass spectrometer in order to obtain an optimum yield of 65%. All compounds were characterized through elemental analysis, infrared spectra, 1H, 13C, 31P-nuclear magnetic resonance spectra and mass spectra. Foundation item: Project (2004018) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars  相似文献   

14.
The structures and dielectric properties of Ba6-3xNd8+2xTi18O54 system(x=2/3) doped with different contents of Bi2O3, whose final molecular formula is Ba6-3x(Nd1-yBiy)8+2xTi18O54 were investigated. It is indicated that the dielectric constant increases greatly whereas Q value(f0=4 GHz) decreases with the increase of Bi2O3 content. However, the temperature coefficient could be controlled below 0±30×10^-6/℃ in the experiment. These phenomena are related to the appearance of a new phase, Bi4Ti3O12, which has high dielectric constant. Also, that Bi^3+(0.13 nm) substitutes for Nd^3+(0.099 5 nm) will increase the unit cell volume, which will lead to the enlargement of the octahedron B site occupied by Ti^4+. So the spontaneous polarization of Ti^4+ ions will be strengthened. Besides, Bi^3+ will fill up some vacancies which Ba^2+ or Nd^3+ ions leave in two A1 sites and four A2 sites. More positive ions polarize, which also contributes to higher dielectric constant. The samples got with the optimium properties are sintered at 1 200 ℃ for 4 h, when y=0.25, ε≈110, Q≈5 400(f0=4 GHz), TCC=-4.7×10^-6/℃; When y=0.3, ε≈120, Q≈5 000(f0=4 GHz), TCC=-24×10^-6/℃.  相似文献   

15.
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=[1 0 -1]^T and h=0.8 time-delay boundary.  相似文献   

16.
An iridium (III) bis[(4,6-difluorophenyl)pyridinato-N, C2][6-(6′-(4″-(5‴-phenyl-1‴, 3‴, 4‴-oxadiazole- 2‴-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by 1H NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (III) bis[(4,6-difluorophenyl)pyridinato-N, C2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex. Foundation item: Projects(20772101, 50473046) supported by the National Natural Science Foundation of China; Project(2007FJ3017) supported by the Hunan Provincial Science Foundation, China; Project(07C764) supported by the Science Foundation of the Education Department of Hunan Province, China  相似文献   

17.
In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti-49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1 100 ℃ with strain rates of 10^-3-10^-1 s^-1. Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n, has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ = K1 drex^-0.56. The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lgdrex= -0.281 1gZ 3.908 1.  相似文献   

18.
The biological method to synthesize thuringiensin and the influence of formate on thuringiensin biosynthesis were investigated. Addition of 1.00 g/L formate to growth medium of bacillus thuringiensis YBT-032 resulted in significant enhancements in productions of citrate, α -ketoglutarate, intracellular adenine and thuringiensin. These results demonstrate that added formate attends metabolism of cell, facilitates carbon metabolic flux in tricarboxylic acid cycle and hexose monophosphate pathway. As a carbon source, formate facilitates cell growth, increases glucose consumption and enhances the ability of cell to synthesis adenine analogues, and subsequently thuringiensin. Thuringiensin production rate significantly enhanced from 6.44 to 8.46 mg·g^-1 · h and transformation ratio from glucose to thuringiensin increased by 43.30%.  相似文献   

19.
Anti-plane punch-through shear test and anti-plane four-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode III) loading. The tensile and shear stresses at the crack tip are calcualted by finite element method. The results show that under Mode III loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode I instead of Mode III fracture occurs in brittle rock under Mode III loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form. Foundation item: Project (50374073) supported by the National Natural Science Foundation of China; project (2002032256) supported by the Postdoctor Science Foundation of China  相似文献   

20.
Multiple filling of gobs will lead to a layered structure of the backfill. To explore the influence of layering structure on the mechanical properties and failure modes of backfill, different backfill specimens were prepared with a cement/sand ratio of 1:4, a slurry concentration of 75%, and backfilling times of 1, 2, 3 and 4, separately. Triaxial cyclic loading and unloading experiments were carried out. The results show that with an increase in backfilling time, the peak strength of backfill decreases as a polynomial function and the peak strain increases as an exponential function. The cyclic load enhances the linear characteristic of backfill deformation. The loading and unloading deformation moduli have a linear negative correlation with the backfilling time. The unloading deformation modulus is always slightly higher than the loading deformation modulus. The failure modes of stratified backfill are mainly characterized by conjugate shear failure at the upper layer and tensile failure across the layer plane, and there is usually no damage in the lower layer away from the loading area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号