首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc and zinc-nickel (13% Ni) electrodeposits were passivated by dipping in chromate baths and characterized by scanning electron microscopy. The corrosion behaviour was studied using a.c. electrochemical techniques; electrochemical impedance spectroscopy (EIS) measurements were performed at open circuit and under galvanostatic control during the 24 h immersion time. In sodium chloride solution the zinc-nickel electrodeposits show a better corrosion resistance compared to the pure zinc coatings. During the immersion time, a surface nickel enrichment was observed which, together with the zinc corrosion products, acts as a barrier layer reducing the total corrosion rate. In the same solution the passivation treatment improves the corrosion resistance of the electrodeposits; nevertheless, on zinc substrates, the protection exerted by the chromate film is not, always effective during the immersion time. On the contrary the chromate coating on zinc-nickel substrates induces a remarkable and durable improvement of the corrosion resistance reducing the zinc dissolution almost completely. In the ammonium sulphate solution, the corrosion mechanism is significantly influenced by hydrogen reduction on the zinc-nickel surfaces, and by the production of a local surface acidity which is aggressive for the chromate coatings.  相似文献   

2.
The corrosion behaviour, transport properties and thermal stability of epoxy coatings electrodeposited on steel and steel modified by Zn–Co alloys were investigated during exposure to 3% NaCl solution. The electrochemical impedance spectroscopy (EIS), gravimetric liquid sorption measurements and thermogravimetric analysis (TGA) were used. Zn–Co alloys were electrodeposited on steel from chloride and sulphate baths, by different current densities. From the time dependence of pore resistance and coating capacitance of epoxy coating, diffusion coefficient of water through epoxy coating and thermal stability it was shown that Zn–Co sublayer obtained from chloride solution significantly improves the corrosion stability of the protective system based on epoxy coating. Almost unchanged values of pore resistance were obtained over the long period of exposure time, indicating the great stability of this protective system, due to the existence of a passive layer consisting of basic salts.  相似文献   

3.
Zinc-nickel alloys were electrodeposited on steel from chloride baths containing NH4Cl using different plating conditions. Current density, temperature and nickel percentage in the baths were found to strongly influence the composition of the deposits and the morphology. At low current densities transition from anomalous to normal codeposition was observed. The changes in potential, current efficiency, composition and morphology which follow the transition were studied. No increase in the partial current of hydrogen reduction was observed at the potential values from which anomalous codeposition begins; this fact, plus the formation of zinc ammonium complexes, seems to exclude the precipitation of zinc hydroxide at the electrode surface. The electrodeposition of zinc-nickel alloys is discussed emphasizing the importance of kinetic parameters and cathodic potentials.  相似文献   

4.
In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al2O3-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al2O3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year).  相似文献   

5.
Chromium-phosphorus (Cr-P) coatings are electrodeposited from trivalent Cr (Cr(III)) baths containing hypophosphite. The electrochemical corrosion behavior of Cr-P coatings, traditional Cr coatings deposited in hexavalent Cr (Cr(VI)) baths, and chromium-carbon (Cr-C) coatings deposited in Cr(III) baths containing formate are studied by measuring potentiodynamic polarization curves in a 10 wt% HCl solution. The composition and morphology of the coating surface layers are investigated by X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM), respectively. The results of electrochemical tests show that Cr-P coatings exhibit better corrosion resistance than traditional Cr and Cr-C coatings, which is characterized by a lower critical current density, lower passive current density, and lager passive potential range. XPS and SEM analyses confirm that the excellent corrosion resistance of Cr-P coatings is attributed to the formation of a phosphide passive film, which has high stability and self-repairing ability, and can act as a “buffer” to reject the penetration of chloride ions.  相似文献   

6.
《Ceramics International》2016,42(4):5136-5140
Anti-reflection coatings (ARCs) are widely used in various optical and optoelectronic devices to minimize the reflection of light. In this study, we demonstrated the fabrication of ZnO nanopyramidal structures on Si substrate via low-temperature electrochemical deposition. We also investigated the anti-reflection (AR) properties of these nanostructures compared with nanorods and planar ZnO texture on Si substrates. We changed the growth conditions, namely, growth temperature and applied current density, to modify the shape of the ZnO nanorod tips. Nanopyramidal structures with continuously varying refractive index profiles in a single layer were obtained. Reflectance spectra show that the nanopyramid-based texture reduced the reflection of light in a broad spectral range from 380 nm to 1000 nm and is much more effective than nanorod and planar textures. For nanopyramid arrays (NPAs) with average tip diameter of 20 nm, we achieved a 6.5% reflectance over a wide range of wavelengths, which is superior to an optimized single-layer ARC such as SiO2 or TiO2. These textured ZnO ARCs may be applied to a wide variety of photovoltaic devices and other anti-reflection applications with large areas because of their low temperature, fast growth, and simple fabrication.  相似文献   

7.
Texture and surface morphology in zinc electrodeposits   总被引:1,自引:0,他引:1  
The texture and morphology of zinc coatings electrodeposited on low carbon steel substrate have been studied. The predominant texture component of zinc coating at low overpotentials was pyramidal (11.5) and (11.6) non-fiber while at high overpotentials (00.2) fiber component dominated. The morphological analysis of the coating surface indicates that the non-fiber texture component results from epitaxial growth of zinc which develops through 2D nucleation and bunching growth of substrate surface microsteps, while the (00.2) fiber component starts from 3D nucleation and oriented growth to promote the plane having the lowest surface energy (i.e., (00.2)) parallel to the steel substrate surface. Zinc hydroxide adsorption prevents 3D nucleation at low overpotentials and this process favors epitaxial growth of the zinc deposit. At high overpotentials, inhibited zinc adsorption, in addition to increased number of active nucleation sites, promotes strong (00.2) fiber component. Such variation in texture indicates that the electrodeposit texture is strongly dependant on overpotential.  相似文献   

8.
Hydrogen coevolution and permeation in nickel electroplating   总被引:1,自引:0,他引:1  
Nickel coatings were electrodeposited onto a steel membrane in a conventional Devanathan cell in order to measure the diffusion rate of hydrogen into the steel substrate during electrodeposition. In most cases a Watts' solution containing various organic additives was used: butyne-2 diol-1, 4; saccharine or thiourea. The structure of the electrodeposits was studied by X-ray and Transmission electron microscopy (TEM). It was shown that the electrodeposition parameters (pH, composition of the bath, additives) have a strong effect on hydrogen permeation. The use of organic additives during Ni plating increased the penetration of hydrogen into the substrate. In particular, sulfur-containing additives cause a fast initial increase of the permeation rate, which is attributable to a high surface concentration of Hads when steel is not totally covered with nickel. By performing permeation experiments with Ni coatings during hydrogen charging from a H2SO4 solution, it was shown that hydrogen permeation through nickel coatings is influenced by their fibre texture and by their grain sizes. A low permeation rate was observed in coatings plated in the presence of butyne-2 diol-1,4, which exhibit a strong 100 texture with large grains and a low density of defects. Conversely, the hydrogen diffusion rate is very high in coatings plated in the presence of thiourea or saccharine. These coatings exhibit a weak texture with very small grains.  相似文献   

9.
The corrosion protection properties of polypyrrole (PPy) electrodeposited onto aluminium alloy 2024-T3 substrates were investigated as a function of the doping agent. We used camphor sulfonic acid (CSA), para toluene sulfonic acid (p-TSA), phenylphosphonic acid (PPA), oxalic acid (OA) and cerium nitrate salt (Ce(NO3)3) as doping agents. The resulting coatings have been evaluated towards corrosion protection of aluminium alloy 2024-T3 using electrochemical impedance spectroscopy (EIS). Complementary, scanning electron microscopy (SEM) provided images on the morphology and the thickness of the coatings. The results showed that coatings formed using Ce(NO3)3 solution protect the substrate more efficiently compared to the other coatings.  相似文献   

10.
Nickel-cobalt (Ni-Co) oxide thin films were electrodeposited onto copper substrates in an electrolyte containing cobalt chloride and nickel chloride, and the electrochemical capacitor behaviors of these films were investigated. The XRD pattern revealed that the electrodeposited Ni-Co oxide thin film was comprised of NiCo2O4. In the SEM image, the electrodeposited Ni-Co oxide film was covered with hexagonal and cubical shaped particles. The electrodeposited Ni-Co oxide electrode exhibited a specific capacitance of 148 F/g at a scan rate of 20 mV, and the current density was fairly stable over 200 cycles. The charge-discharge test confirmed that capacitance of the electrodeposited Ni-Co oxide electrode resulted from the electric double layer capacitance and pseudocapacitance.  相似文献   

11.
The formation of zinc phosphate coating by cathodic electrochemical treatment and evaluation of its corrosion resistance is addressed. The corrosion behaviour of cathodically phosphated mild steel substrate in 3.5% sodium chloride solution exhibits the stability of these coatings, which lasts for a week's time with no red rust formation. Salt spray test convincingly proves the white rust formation in the scribed region on the painted substrates and in most part of the surface on unpainted surface. The protective ability of the zinc corrosion product formed on the surface of the coated steel is evidenced by the decrease in the loss in weight due to corrosion of the uncoated mild steel, when it is galvanically coupled with cathodically phosphated mild steel. Potentiodynamic polarization curves reveal that Ecorr shifts towards higher cathodic values (in the range of −1000 to −1100 mV versus SCE) compared to that of uncoated mild steel and conventionally phosphated mild steel substrates. The icorr value is also very high for these coatings. EIS studies reveal that zinc dissolution is the predominant reaction during the initial stages of immersion. Subsequently, the non-metallic nature of the coating is progressively increased due to the formation of zinc corrosion products, which in turn enables an increase in corrosion resistance with increase in immersion time. The zinc corrosion products formed may consist of zinc oxide and zinc hydroxychloride.  相似文献   

12.
Alternative electrolytes, such as citrate baths, are now studied, aiming to reduce the toxicity and the cost of the electroplating process while maintaining the decorative qualities and anticorrosive properties of the coatings. For this purpose, brightening and/or leveling compounds are usually added to the base citrate bath. In this work, Cu–Zn alloys were electroplated on mild steel substrates from electrolytes containing sodium citrate and additives (benzotriazole and cysteine) at constant stirring speed. The results showed that coatings produced from baths containing additives were brighter than those obtained from the base citrate bath. Additionally, the presence of benzotriazole directly influenced the coating composition and the properties of the deposited alloy: the amount of zinc in this coating increased excessively, and the coating/substrate corrosion presented a poor anticorrosive performance.  相似文献   

13.
Polypyrrole (PPy) and polyaniline (PAni) coatings were electrosynthesized on copper, by using cyclic voltammetry technique. Then, these coatings were modified with the deposition of zinc particles from aqueous zinc sulphate solution. The electrodeposition of zinc was achieved at a constant potential value of −1.20 V, in the amount of ∼0.75 mg/cm2. The corrosion performance of zinc modified polymer coatings were investigated in 3.5% NaCl solution; by using the electrochemical impedance spectroscopy (EIS), and anodic polarization curves. The zinc particles improved the barrier property of polymer films, thanks to formation of voluminous zinc corrosion products within the pores of polymer coating. Also, the zinc particles provided cathodic protection to the substrate, where the polymer film played the role of conductance between zinc particles and copper.  相似文献   

14.
The anodic behaviour of composition modulated Zn–Co multilayers (CMM) electrodeposited from single and dual baths was studied. Multilayers with thickness of the individual sublayers 0.3 and 3.0m were electrodeposited galvanostatically. It was established that most of the CMM coatings obtained from dual baths dissolve at potentials that are close to those for pure Co coatings. CMM coatings obtained from a single bath dissolve at potentials between the dissolution potentials of pure Co and pure Zn coatings. With increase in the number of sublayers in CMM coatings with equal total thickness, deposited both from dual or single baths, regardless of their individual sublayer thickness and sequence, potentials of the stripping peaks are shifted positively.  相似文献   

15.
Polyaniline films were electrodeposited at pure aluminium from a tosylic acid solution containing aniline. These polymer films exhibited similar characteristics as pure polyaniline electrosynthesized at an inert platinum electrode, when removed from their respective substrates and dissolved in NMP. Both polymers had similar molecular weights and similar UV-visible absorption spectra. However, the aluminium substrate had a considerable effect on the electrochemical activity of the films. The polyaniline films deposited at aluminium appeared to lose electroactivity and the electrochemical impedance data were governed by the oxidized aluminium substrate. This is consistent with a galvanic interaction between the polymer and the aluminium substrate, giving rise to oxidation of the aluminium and reduction of the polymer. The polyaniline deposits appeared to offer only a slight increase in the corrosion resistance of aluminium. Surface potential measurements, using a scanning vibrating probe, showed that attack initiated underneath the polymer under anodic polarization conditions, indicating that chloride anions diffuse across the polymer to react at the underlying aluminium substrate.  相似文献   

16.
《Ceramics International》2002,28(5):467-477
The electrochemical oxidation (anodization) of electrodeposited CoFe2 alloy films in alkaline solution (1 N KOH) is depicted as a novel and powerful route for preparing spinel nanocrystalline CoFe2O4 thin films. CoFe2 alloy films were electrodeposited from simple aqueous sulphate bath. Several key processing parameters were optimized to obtain good quality CoFe2 alloy films with maximum thickness. The films resulting from electrochemical oxidation for 30 min at 5 mA/cm2 current density possess high quality surface and well crystallized spinel cubic CoFe2O4 structure. The effects of air annealing of electrochemically oxidized alloy films on various properties were studied.  相似文献   

17.
Electroplating of cobalt onto steel substrates from citrate baths has been investigated under different conditions of bath composition, current density, pH and temperature. A detailed study has been made of the influence of these variables on the potentiodynamic cathodic polarization curves, cathodic current efficiency and the throwing power as well as the throwing index of these baths. The optimum bath composition has been established and it contains: CoSO4.7H2O (0·36 mol dm−3) trisodium citrate (0·19 mol dm−3) and citric acid (0·1 mol dm−3) at pH 5·0. The microhardness of cobalt electrodeposited from citrate baths is high and it may be, under certain conditions, two or three times higher than that reported for cobalt electrodeposited from other different baths. The surface morphology of the as-plated cobalt was investigated by using scanning electron microscopy (SEM) while the structure was studied by using X-ray diffraction analysis and anodic stripping voltammetry (ASV) techniques. © 1998 Society of Chemical Industry  相似文献   

18.
This study examined the influence of citrate and tartrate as complexing agents on the electrodeposition and surface morphology of Cu–Ni layers. The alloys obtained in the tartaric acid and sulphate baths were nobler than those obtained in the citric acid/citrate and citric acid/citrate/tartaric acid media. The results indicated that the complexing medium influences the nobility and the type of mass transport of the alloy formed. The morphology of the electrodeposited Cu–Ni layers changed from a rather porous appearance in the absence of the complexing agents to nodular, cracked mud and cauliflower appearances for the citric acid/sodium citrate/sodium sulphate medium, tartaric acid/sodium sulphate medium and citric acid/sodium citrate/tartaric acid/sodium sulphate medium, respectively. The chemical composition of the Cu–Ni layers revealed the preferential deposition of copper. The ultraviolet–visible spectrophotometry measurements indicated the occurrence of the d–d type transition, regardless of the complexing medium employed.  相似文献   

19.
Impedance measurements were performed at room temperature in a 0.005 M Na2HPO4 solution on steel and on electrodeposited Zn and Zn–12%Ni before and after phosphating. It was found that potential and impedance parameters (R ct and C d) for phosphated materials attained nearly steady values within about 20 min, indicating that this solution did not cause meaningful changes in phosphate coatings and that it could therefore be used for the quality evaluation of these coatings. On scratches in phosphate coatings on Zn or Zn–12%Ni phosphate deposits rapidly formed, probably owing to enhanced dissolution of the locally exposed substrates at the nobler potentials of the coated materials. This demonstrates that damaged coatings can easily recover on Zn substrates in a non-aggressive phosphate solution. It is suggested that the formation of phosphate deposits on bare metal amidst phosphate coatings should be taken into account in the porosity determination by chemical or electrochemical methods.  相似文献   

20.
Cu2O thin films were electrodeposited on n-Si (100) and p-Si (111) substrates, and characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy and optical reflectance measurements. The results showed Cu2O deposits with low surface roughness that increase continuously with the thickness. The grains are columnar with cone-shape and texture that follows the orientation of the substrate. The optical gap and the refraction index were also dependent on the texture of the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号