首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inclusions cannot be sufficiently stretched to adapt extremely strict requirement of saw wire with only conventional inclusion softening art. In order to explore a potential new method to further enhance the deformability of inclusions, Na2CO3 addition should be comprehensively investigated due to the extremely low melting temperature of inclusions containing Na2O. In the present study, an effective method of Na2CO3 addition was put forward and a presumable reaction mechanism between Na2CO3/steel/inclusion/slag was deduced by studying the effect of Fe/Na2CO3 (weight ratio), Na2CO3 addition amount and reaction time on inclusions using a graphite tube resistance furnace. The relations between Na2O content, melting temperature, deformability and crystallization of inclusions were also briefly discussed. Through these studies, the deformability of inclusions was significantly improved on the whole.  相似文献   

3.
The rate of Sb elimination from molten copper by the use of Na2CO3 slag was measured at 1523 K. The results obtained under the present experimental conditions show that Sb in molten copper is eliminated in a tri-valent or a penta-valent form, depending on the oxygen concentration at the slag-metal interface, and its elimination rate increases with increasing initial oxygen concentration in molten copper. The overall elimination rate of Sb is affected by the stirring condition of the molten copper, which indicates a rate control by mass transfer in that phase. The mass-transfer coefficients of Sb and oxygen in molten copper at 1523 K without external stirring were determined, respectively, to be
based on the mass balances of Sb and oxygen in the molten copper and slag phases and the equilibrium relation of the Sb elimination reaction at the slag-metal interface.  相似文献   

4.
5.
In order to effectively enhance the efficiency of dephosphorization, the distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron (\( L_{\text{P}}^{\text{Fe-C}} \)) were examined through laboratory experiments in this study, along with the effects of different influencing factors such as the temperature and concentrations of the various slag components. Thermodynamic simulations showed that, with the addition of Na2O and Al2O3, the liquid areas of the CaO-FeO-SiO2 slag are enlarged significantly, with Al2O3 and Na2O acting as fluxes when added to the slag in the appropriate concentrations. The experimental data suggested that \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the binary basicity of the slag, with the basicity having a greater effect than the temperature and FeO content; \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the Na2O content and decrease in the Al2O3 content. In contrast to the case for the dephosphorization of molten steel, for the hot-metal dephosphorization process investigated in this study, the FeO content of the slag had a smaller effect on \( L_{\text{P}}^{\text{Fe-C}} \) than did the other factors such as the temperature and slag basicity. Based on the experimental data, by using regression analysis, \( \log L_{\text{P}}^{\text{Fe-C}} \) could be expressed as a function of the temperature and the slag component concentrations as follows:
$$ \begin{aligned} \log L_{\text{P}}^{\text{Fe-C}} & = 0.059({\text{pct}}\;{\text{CaO}}) + 1.583\log ({\text{TFe}}) - 0.052\left( {{\text{pct}}\;{\text{SiO}}_{2} } \right) - 0.014\left( {{\text{pct}}\;{\text{Al}}_{2} {\text{O}}_{3} } \right) \\ \, & \quad + 0.142\left( {{\text{pct}}\;{\text{Na}}_{2} {\text{O}}} \right) - 0.003\left( {{\text{pct}}\;{\text{TiO}}_{2} } \right) + 0.049\left( {{\text{pct}}\;{\text{P}}_{2} {\text{O}}_{5} } \right) + \frac{13{,}527}{T} - 9.87. \\ \end{aligned} $$
  相似文献   

6.
A novel pyrometallurgical route was used to reduce the lead paste to obtain metallic lead with different additions of sodium carbonate at 850°C in a silicon carbide crucible. The process allows to obtain a high recovery of metallic lead in a single step and a slag constituted mainly by lead silicate. Products obtained were characterized by atomic absorption, X-ray powder diffraction and SEM-EDS techniques. A thermodynamic study was carried out with the software FactSage to determinate the compounds formation to the experimental conditions. High amounts of Na2CO3 and SiC promoted the formation of a lead sulfide compound which decreased the lead recovery.  相似文献   

7.
The oxidation mechanism of liquid Fe-V alloys with V content from 5 to 20 mass pct under different oxygen partial pressures using CO2-O2 mixtures with CO2 varying from 80 pct to 100 pct was investigated by thermogravimetric analysis between 1823 K and 1923 K (1550 °C and 1650 °C). The products after oxidation were identified by scanning electron microscopy energy-dispersive spectrograph and X-ray diffraction. The results indicate that the oxidation process can be divided into the following steps: an apparent incubation period, followed by a chemical reaction step with a transition step before the reaction, and diffusion as the last stage. At the initial stage, a period of slow mass increase was observed that could be attributed to possible oxygen dissolution in the liquid iron-vanadium coupled with the vaporization of V2O. The length of this period increased with increasing temperature as well as vanadium content in the melt and decreased with increasing oxygen partial pressure of the oxidant gas. This analysis was followed by a region of chemical oxidation. The oxidation rate increased with the increase of the O2 ratio in the CO2-O2 gas mixtures. During the final stage, the oxidation seemed to proceed with the diffusion of oxygen through the product layer to the reaction front. The Arrhenius activation energies for chemical reaction and diffusion were calculated, and kinetic equations for various steps were setup to describe the experimental results. The transition from one reaction mechanism to the next was described mathematically as mixed-control equations. Thus, uniform kinetic equations have been setup that could simulate the experimental results with good precision.  相似文献   

8.
Glasses and melts of the system X mol % Na2O · GeO2 (X = 0, 10, 20, 30) are investigated using high-temperature Raman spectroscopy. Addition of an oxide modifier is shown to bring about an increase in the coordination number of central germanium atoms along with the depolarization of the three-dimensional GeO2 network. The glass-melt transition in germanate systems with a low oxide-modifier content is accompanied by the transition of six-coordinated germanium atoms into four-coordinated (with oxygen) ones and a simultaneous formation of nonbridge oxygen atoms.  相似文献   

9.
10.
Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.  相似文献   

11.
The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature {χ] = f(CR, [Al2O3], T)}.  相似文献   

12.
To improve mechanical properties of S2355JR carbon steel, pre-synthesized ZrB2 nanocrystals were used to coat the metal surface by laser cladding using 2000 W CO2 laser. ZrB2 nanocrystals were synthesized by mechanochemical process. The effect of laser power on the coating layers was examined for optimizing the most effective coating conditions. Microstructural studies were carried out using optical microscope, scanning electron microscope and X-ray diffraction to analyze phase structures of the coated layers. Mechanical characteristics of the laser coated layers were evaluated by studying microhardness, wear and scratch resistance properties. Maximum hardness of the coated layers was observed while cladding with 75 and 125 W laser powers, when other processing parameters and conditions were kept at optimum levels. EDS analysis of these laser cladded layers indicated the formation of complex boro-nitrides, nitrides and carbides of Zr and Fe that contributed to vast increase in hardness of the laser-clad coating on S2355JR steel. Depending upon the laser powers used, the thickness of the coated layers was found to be in the range of 15–37 µm. The wear and micro-scratch tests results revealed significant improvement in wear properties.  相似文献   

13.
One of the most important problems in the steelmaking process is an increase of the disposal slag mainly discharged from the dephosphorization process. In order to reduce the quantity of the disposal slag, the complete removal of silicon from molten pig iron is considered very effective before the dephosphorization in the pretreatment process. From this point of view, the desiliconization and the decarburization behavior of Fe-C-Si alloy with CO2 and O2 has been investigated in the present work. It is thermodynamically calculated that silicon should be oxidized in preference to carbon over 0.60 mass pct Si under the condition of sSiO2=a C=1 at 1573 K and is experimentally confirmed that silicon is only oxidized under the condition in actual. Even under the competitive region of desiliconizing and decarbonizing, under 0.60 mass pct Si, silicon is found to be oxidized down to about 0.1 mass pct Si in preference. The overall rate constants for the desiliconization and the decarburization are derived, and the value for the desiliconization is one order of magnitude larger than that for the decarburization. The influence of sulfur is also examined, and the retarding effect is not observed on the oxidation reactions.  相似文献   

14.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

15.
Phase-equilibrium data and liquidus isotherms for the system “MnO”-CaO-(Al2O3+SiO2) at silicomanganese alloy saturation have been determined in the temperature range of 1373 to 1723 K. The results are presented in the form of the pseudoternary sections “MnO”-CaO-(Al2O3+SiO2) with Al2O3/SiO2 weight ratios of 0.55 and 0.65. The primary-phase fields have been identified in this range of conditions.  相似文献   

16.
NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.  相似文献   

17.
The phase diagram of the CaSO4-Na2SO4-Ca3(AsO4)2-Na3(AsO4) system was measured by differential thermal analysis and by an equilibration and quenching technique. Thermodynamic models were developed giving the Gibbs energies of all phases as functions of temperature and composition. Optimized model parameters were obtained by assessment of all available thermodynamic and phase equilibrium data. The models, which reproduce all the data within experimental error limits, were used to calculate the liquidus surface of the system. The modified quasi-chemical model in the quadruplet approximation was used for the liquid solution. For the various solid solution phases, the modified quasi-chemical model, which accounts simultaneously for short-range-ordering among first-nearest-neighbor (FNN) and second-nearest-neighbor (SNN) pairs, was used for the first time within the framework of the compound energy formalism. The distinction between true model parameters and formalism parameters is made. Implications of the work for the potential use of sulfate fluxes for copper refining are discussed.  相似文献   

18.
Understanding the viscous behavior of silica-based molten fluxes is essential in maintaining the reliability of steel casting operations and in preventing breakouts. In particular, high concentrations of aluminum in recently developed transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) steels tend to promote reduction of silica in the mold fluxes that result in the formation of alumina, which in turn increases the viscosity. To counteract this effect, significant amounts of fluidizers such as CaF2 and Li2O are required to ensure that mold fluxes have acceptable lubrication and heat transfer characteristics. The viscous behavior of the slag system based on CaO-SiO2-12 wt pct Na2O with various concentrations of CaF2 and Li2O has been studied using the rotating spindle method to understand the effects on the viscosity with these additives. CaF2 additions up to 8 wt pct were effective in decreasing the viscosity by breaking the network structure of molten fluxes, but CaF2 concentrations above this level had a negligible effect on viscosity. Li2O additions up to 2 wt pct were also effective in decreasing the viscosity, but the effect was comparatively negligible above 2 wt pct. Using Fourier transform infrared (FTIR) analysis of as-quenched slag samples, it was concluded that the viscosity was controlled more effectively by changing the larger complex silicate structures of rings and chains than by changing the amounts of simpler dimers and monomers.  相似文献   

19.
All available thermodynamic and phase-diagram data have been critically evaluated and optimized for the liquid-slag phase and for all solid phases at 1 bar pressure from 298 K to above the liquidus temperatures for the systems MnO-Al2O3 and MnO-Al2O3-SiO2, and a database of model parameters has been prepared. The modified quasichemical model was employed for the molten-slag phase. Calculations using the database were performed with applications to inclusion engineering for Mn/Si killed steel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号