首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serotonin (5-HT) has been implicated in the phase adjustment of the circadian system during the subjective day in response to nonphotic stimuli. Two components of the circadian system, the suprachiasmatic nucleus (SCN) (site of the circadian clock) and the intergeniculate leaflet (IGL), receive serotonergic projections from the median raphe nucleus and the dorsal raphe nucleus, respectively. Experiment 1, performed in golden hamsters housed in constant darkness, compared the effects of bilateral microinjections of the 5-HT1A/7 receptor agonist, 8-hydroxydipropylaminotetralin (8-OH-DPAT; 0.5 microgram in 0.2 microliter saline per side), into the IGL or the SCN during the mid-subjective day. Bilateral 8-OH-DPAT injections into either the SCN or the IGL led to significant phase advances of the circadian rhythm of wheel-running activity (p < .001). The phase advances following 8-OH-DPAT injections in the IGL were dose department (p < .001). Because a light pulse administered during the middle of the subjective day can attenuate the phase-resetting effect of a systemic injection of 8-OH-DPAT, Experiment 2 was designed to determine whether light could modulate 5-HT agonist activity at the level of the SCN and/or the IGL. Serotonergic receptor activation within the SCN, followed by a pulse of light (300 lux of white light lasting 30 min), still induced phase advances. In contrast, the effect of serotonergic stimulation within the IGL was blocked by a light pulse. These results indicate that the respective 5-HT projections to the SCN and IGL subserve different functions in the circadian responses to photic and nonphotic stimuli.  相似文献   

2.
Mammalian circadian rhythms are synchronized to environmental light/dark (LD) cycles via daily phase resetting of the circadian clock in the suprachiasmatic nucleus (SCN). Photic information is transmitted to the SCN directly from the retina via the retinohypothalamic tract (RHT) and indirectly from the retinorecipient intergeniculate leaflet (IGL) via the geniculohypothalamic tract (GHT). The RHT is thought to be both necessary and sufficient for photic entrainment to standard laboratory light/dark cycles. An obligatory role for the IGL-GHT in photic entrainment has not been demonstrated. Here we show that the IGL is necessary for entrainment of circadian rhythms to a skeleton photoperiod (SPP), an ecologically relevant lighting schedule congruous with light sampling behavior in nocturnal rodents. Rats with bilateral electrolytic IGL lesions entrained normally to lighting cycles consisting of 12 hr of light followed by 12 hr of darkness, but exhibited free-running rhythms when housed under an SPP consisting of two 1 hr light pulses given at times corresponding to dusk and dawn. Despite IGL lesions and other damage to the visual system, the SCN displayed normal sensitivity to the entraining light, as assessed by light-induced Fos immunoreactivity. In addition, all IGL-lesioned, free-running rats showed masking of the body temperature rhythm during the SPP light pulses. These results show that the integrity of the IGL is necessary for entrainment of circadian rhythms to a lighting schedule like that experienced by nocturnal rodents in the natural environment.  相似文献   

3.
The suprachiasmatic nuclei (SCN) contain the principal circadian clock governing overt daily rhythms of physiology and behavior. The endogenous circadian cycle is entrained to the light/dark via direct glutamatergic retinal afferents to the SCN. To understand the molecular basis of entrainment, it is first necessary to define how rapidly the clock is reset by a light pulse. We used a two-pulse paradigm, in combination with cellular and behavioral analyses of SCN function, to explore the speed of resetting of the circadian oscillator in Syrian hamster and mouse. Analysis of c-fos induction and cAMP response element-binding protein phosphorylation in the retinorecipient SCN demonstrated that the SCN are able to resolve and respond to light pulses presented 1 or 2 hr apart. Analysis of the phase shifts of the circadian wheel-running activity rhythm of hamsters presented with single or double pulses demonstrated that resetting of the oscillator occurred within 2 hr. This was the case for both delaying and advancing phase shifts. Examination of delaying shifts in the mouse showed resetting within 2 hr and in addition showed that resetting is not completed within 1 hr of a light pulse. These results establish the temporal window within which to define the primary molecular mechanisms of circadian resetting in the mammal.  相似文献   

4.
In response to a light pulse, hamsters normally generate phase advances that are positively correlated with the length of their circadian period (tau). To determine whether this is a general property of the phase-shifting oscillator, the present study looked for a correlation between tau and phase-advance size not only for photic but also for nonphotic shifts. Syrian hamsters, Mesocricetus auratus, were entrained to light-dark cycles with a periodicity of either 23.67 h (the short-T group) or 24.33 h (the long-T group); after release into constant darkness, the short-T and long-T groups exhibited short and long taus, respectively. These animals were then induced to run in a novel exercise wheel for 3 h, starting at circadian time (CT) 7, or were exposed to 20 min of light, starting at CT 19. The size of the ensuing phase advances did not differ between the short-T and long-T groups not only for the nonphotic stimulus but also for the photic one, an unexpected result for the photic stimulus. Within the short-T groups for photic and nonphotic stimuli, the shorter tau was, the larger the phase advances were, another unexpected relationship. Another experiment where phase delays were induced by light pulses at CT 15 also failed to yield significant differences between the short-T and long-T groups. Independently of their after-effects on tau, T cycles may influence the capacity of the pacemaker to phase shift in ways that are still unclear but at least similar for both photic and nonphotic shifts.  相似文献   

5.
Photic information that entrains circadian rhythms is transmitted to the suprachiasmatic nucleus (SCN) from the retina and from the retinorecipient intergeniculate leaflet (IGL). Expression of light-induced Fos protein in SCN neurons is correlated with the effectiveness of such light to induce phase shifts, and is prevented by pretreatment with glutamate receptor antagonists that prevent phase shifts as well. In the present study we demonstrate that treatments with N-methyl-d-aspartate (NMDA) and non-NMDA receptor antagonists prior to light pulses during the subjective night have no effect on light-induced Fos immunoreactivity (Fos-IR) in IGL neurons despite attenuating Fos-IR in the SCN. Transmission of photic information along retinogeniculate and retinohypothalamic pathways appears to be mediated by different mechanisms.  相似文献   

6.
Circadian rhythms in rodents respond to arousing, nonphotic stimuli that contribute to daily patterns of entrainment. To examine whether the motivational significance of a stimulus is important for eliciting nonphotic circadian phase shirts in Syrian hamsters (Mesocricetus auratus), the authors compared responses to a highly rewarding stimulus (lateral hypothalamic brain stimulation reward [BSR]) and a highly aversive stimulus (footshock). Animals were housed on a 14:10-hr light-dark cycle until test day, when they were given a 1-hr BSR session (trained animals) or a 1-mA electric footshock at 1 of 8 circadian times, and were maintained in constant dark thereafter. Both BSR pulses and footshock produced nonphotic phase response curves. These results support the hypothesis that arousal resulting from the motivational significance of a stimulus is a major factor in nonphotic phase shifts. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus exhibit a daily rhythm in spontaneous electrical activity. Essentially two methods have been employed to record this circadian rhythm: (1) an in vitro brain slice technique and (2) in vivo multiunit recordings. Reentrainment of a circadian output to a shifted light:dark cycle commonly takes several cycles (depending on the amount of shift) until completed. Such a resetting kinetic has also been shown to be valid for SCN electrical activity if recorded in vivo. In an in vitro slice preparation, however, pharmacologically induced resetting is much faster and lacks transients; that is, a shift is completed within one cycle. This study was designed to probe for the presence of transients in the neuronal activity of the SCN in a brain slice preparation. The authors exposed Djungarian hamsters to an 8-h advanced or delayed light:dark cycle and monitored wheel-running activity during reentrainment. Additional groups of identically treated hamsters were used to record the pattern of spontaneous neuronal activity within the SCN using the brain slice preparation. Neuronal activity exhibited the usual rhythm with high firing rates during the projected day and low firing rates during the projected night. However, following 1 day of exposure to the 8-h advanced light:dark cycle, this rhythm disappeared in 6 of 7 slices. Rhythmicity was still absent following 3 days of exposure to the advanced light:dark cycle (n = 4). By contrast, 3 of 7 slices prepared from hamsters exposed to a delayed light:dark cycle for 3 days exhibited a daily rhythm in electrical activity. Although pharmacological agents reset the in vitro SCN neuronal activity almost instantaneously and in in vivo studies a stable phase relationship to a shifted light:dark cycle occurs gradually over several cycles, the authors did not detect either of these patterns. Such differences in resetting kinetics (e.g., rapid resetting, gradual reentrainment, temporary lack of measurable rhythmicity) may be due to (a) application of a resetting stimulus in vivo versus in vitro, (b) duration of the resetting stimulus, (c) the nature of the resetting stimulus, or (d) the recording technique employed.  相似文献   

8.
Little is known about the neural substrates controlling circadian rhythms in day-active compared to night-active mammals primarily because of the lack of a suitable diurnal rodent with which to address the issue. The murid rodent, Arvicanthis niloticus, was recently shown to exhibit a predominantly diurnal pattern of activity and body temperature, and may be suitable for research on the neural mechanisms underlying circadian rhythms. This paper describes, in A. niloticus, the anatomy of two neural structures that play important roles in the control of circadian rhythms, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL). Immunohistochemical techniques were used to examine the distribution of neuroactive peptides in the SCN and IGL, and retinal projections to these structures were traced with anterograde transport of the beta subunit of cholera toxin. In A. niloticus, distinct subdivisions of the SCN contained cell bodies with immunoreactive (IR) vasopressin, vasoactive intestinal polypeptide, gastrin-releasing peptide, and corticotropin-releasing factor. The SCN did not contain cell bodies with met-enkephalin-IR and substance P-IR, but did contain fibers with substance P-IR and neuropeptide Y-IR. Retinal fibers were present throughout the SCN, but were most densely concentrated along its ventral edge, particularly in the contralateral SCN. Retinal fibers also extended to a variety of hypothalamic regions outside the SCN, including the supraoptic nucleus and the subparaventricular region. The IGL contained cells with neuropeptide Y-IR and enkephalin-IR cells. Retinal fibers projected to both the ipsilateral and contralateral IGL. The anatomy of the SCN and IGL were compared and contrasted with that previously described for other nocturnal and diurnal species.  相似文献   

9.
Systematic treatment of hamsters with triazolam (TRZ) or novel wheel (NW) access will yield PRCs similar to those for neuropeptide Y. Both TRZ and NW access require an intact intergeniculate leaflet (IGL) to modulate circadian rhythm phase. It is commonly suggested that both stimulus types influence rhythm phase response via a mechanism associated with drug-induced or wheel access-associated locomotion. Furthermore, there have been suggestions that one or both of these stimulus conditions require an intact serotonergic system for modulation of rhythm phase. The present study investigated these issues by making serotonin neuron-specific neurotoxic lesions of the median or dorsal raphe nuclei and evaluating phase response of the hamster circadian locomotor rhythm to TRZ treatment or NW access. The expected effect of TRZ injected at CT 6 h on the average phase advance was virtually eliminated by destruction of serotonin neurons in the median, but not the dorsal, raphe nucleus. No control or lesioned animal engaged in substantial wheel running in response to TRZ. By contrast, all median raphe-lesioned hamsters that engaged in substantial amounts of running when given access to a NW had phase shifts comparable to control or dorsal raphe-lesioned animals. The results demonstrate that serotonergic neurons in the median raphe nucleus contribute to the regulation of rhythm phase response to TRZ and that it is unlikely that these neurons are necessary for phase response to NW access. The data further suggest the presence of separate pathways mediating phase response to the two stimulus conditions. These pathways converge on the IGL, a nucleus afferent to the circadian clock, that is necessary for the expression of phase response to each stimulus type.  相似文献   

10.
In nocturnal rodents, the c-fos gene is directly involved in the light mechanism of resetting of the suprachiasmatic nucleus (circadian clock). Light also induces c-fos expression in the retinal ganglion cell layer (GCL), but no attempt has been made to study the retinal responses to the phase-shifting effects of light. The expression of the Fos protein in each of the two populations of the GCL (displaced amacrine cells [DACs] and ganglion cells [GCs]) was analyzed in hamsters after light stimulation delivered early (circadian time [CT13]) and in the middle (CT18) of the subjective night. To evaluate as accurately as possible the number of GCs able to phase shift the locomotor activity rhythm (LAR), neonatal hamsters treated with monosodium glutamate (MSG) were also used, an in vivo model which displays retinal degeneration and LAR normally entrained by light. In nontreated hamsters, the number of Fos-immunoreactive (Fos-ir+) nuclei in the GCL was significantly higher at CT18 than at CT13. In MSG-treated hamsters, the number of Fos-ir+ nuclei was the same at both CTs and nonsignificantly different as those of nontreated hamsters at CT13. MSG treatment destroyed as many Fos-ir+ DACs as Fos-ir- DACs or Fos-ir+ GCs. Fos-ir+ GCs were less sensitive to neurotoxic than other GCs, as only 37% of them were destroyed by treatment versus 92% for Fos-ir- GCs. At CT18, a maximum of 3,500 GCs expressed Fos protein in nontreated hamsters versus only 2,200 in MSG-treated hamsters. This minor subgroup was sufficiently potent to normally synchronize the circadian rhythms to the Light/dark cycle in treated hamsters.  相似文献   

11.
A variety of observations from several rodent species suggest that a serotonin (5-HT) input to the suprachiasmatic nucleus (SCN) circadian pacemaker may play a role in resetting or entrainment of circadian rhythms by non-photic stimuli such as scheduled wheel running. If 5-HT activity within the SCN is necessary for activity-induced phase shifting, then it should be possible to block or attenuate these phase shifts by reducing 5-HT release or by blocking post-synaptic 5-HT receptors. Animals received one of four serotonergic drugs and were then locked in a novel wheel for 3 h during the mid-rest phase, when novelty-induced activity produces maximal phase advance shifts. Drugs tested at several doses were metergoline (5-HT1/2 antagonist; i.p.), (+)-WAY100135 (5-HT1A postsynaptic antagonist, which may also reduce 5-HT release by an agonist effect at 5-HT1A raphe autoreceptors; i.p.), NAN-190 (5-HT1A postsynaptic antagonist, which also reduces 5-HT release via an agonist effect at 5-HT1A raphe autoreceptors; i.p.) and ritanserin (5-HT2/7 antagonist; i.p. and i.c.v.). Mean and maximal phase shifts to running in novel wheels were not significantly affected by any drug at any dose. These results do not support a hypothesis that 5-HT release or activity at 5HT1, 2 and 7 receptors in the SCN is necessary for the production of activity-induced phase shifts in hamsters.  相似文献   

12.
13.
14.
Aging leads to a decrease in circadian organization of behavior. Whether this general observation is related to the finding that in older subjects the arginine-vasopressin (AVP) system in the suprachiasmatic nucleus (SCN) has deteriorated is an unsolved question. Here we assessed circadian organization of running wheel behavior and numbers of AVP cells in the SCN of old voles (n=12, 11. 5 months of age) and compared the results with data from young voles (n=16, 4.5 months of age). A third of the young voles, but three-quarter of the old voles lost circadian rhythmicity. Analysis of daily onset to onset periodicity of running wheel activity at the age of 5 and 10 months in individual voles revealed a significant loss of precision of circadian rhythmicity at the higher age. The number of AVP cells in the SCN of old voles decreased substantially, over 78% compared to young voles in general. AVP cell numbers, however, cannot be directly correlated with the state of rhythmicity in old voles; in one of the three circadian rhythmic old voles the SCN contained the least AVP cells. This study does not support the idea of a causal relationship between aging induced reduction in AVP cells in the SCN and the presence of circadian rhythmicity in behavior.  相似文献   

15.
Although light is the principal zeitgeber to the mammalian circadian system, other cues can be shown to have a potent resetting effect on the clock of both adult and perinatal mammals. Nonphotic entrainment may have both biological and therapeutic significance. This review focuses on the effect of behavioral arousal as a nonphotic cue and the neurochemical circuitry that mediates arousal-induced entrainment in the adult rodent. In addition, it considers the role of nonphotic entrainment of the developing circadian system in perinatal life prior to the establishment of retinal input to the clock.  相似文献   

16.
The intergeniculate leaflet (IGL) is a distinct division of the lateral geniculate complex that participates in the regulation of the circadian rhythm through its projections to the circadian pacemaker located in the suprachiasmatic nuclei of the hypothalamus. A high number of neuropeptide Y (NPY) cell bodies has been described in the IGL by immunohistochemistry and in situ hybridization. The present study investigated whether NPY in the IGL is influenced by the length of the daily photoperiod. By using in situ hybridization we show a significant increase of the number of NPY mRNA containing neurons in the mid-part of the IGL of Syrian hamsters maintained in a short photoperiod compared to those kept in a long photoperiod. On the other hand, NPY mRNA expression per cell in the IGL is similar in both photoperiods tested.  相似文献   

17.
In golden hamsters, microinjections of arginine-vasopressin (AVP) within the anterior hypothalamus trigger a stereotyped scent-marking behavior, flank marking. Our experiment was carried out to test the contribution of AVP neurons within the suprachiasmatic nucleus (SCN) in the control of this behavior. Our results suggest that the SCN does not contribute to flank-marking behavior. Whereas SCN lesions disrupted circadian rhythms of wheel running, the same lesions did not disrupt flank-marking. The results also suggest that neurons located outside the SCN contribute significantly to the vasopressinergic innervation of the brain and the expression of AVP-dependent behaviors, such as flank-marking behavior. Although AVP-immunoreactive fibers were severely (ca. 95%) depleted from several forebrain areas in SCN-lesioned hamsters, the effect of the lesions was much more limited within the forebrain areas involved in flank-marking behavior as well as within the midbrain and hindbrain.  相似文献   

18.
19.
Converging lines of evidence have firmly established that the hypothalamic suprachiasmatic nucleus (SCN) is a light-entrainable circadian oscillator in mammals, critically important for the expression of behavioral and physiological circadian rhythms. Photic information essential for the daily phase resetting of the SCN circadian clock is conveyed directly to the SCN from retinal ganglion cells via the retinohypothalamic tract. The SCN also receives a dense serotonergic innervation arising from the mesencephalic raphe. The terminal fields of retinal and serotonergic afferents within the SCN are co-extensive, and serotonergic agonists can modify the response of the SCN circadian oscillator to light. However, the functional organization and subcellular localization of 5HT receptor subtypes in the SCN are just beginning to be clarified. This information is necessary to understand the role 5HT afferents play in modulating photic input to the SCN. In this paper, we review evidence suggesting that the serotonergic modulation of retinohypothalamic neurotransmission may be achieved via at least two different cellular mechanisms: 1) a postsynaptic mechanism mediated via 5HT1A or 5ht7 receptors located on SCN neurons; and 2) a presynaptic mechanism mediated via 5HT1B receptors located on retinal axon terminals in the SCN. Activation of either of these 5HT receptor mechanisms in the SCN by specific 5HT agonists inhibits the effects of light on circadian function. We hypothesize that 5HT modulation of photic input to the SCN may serve to set the gain of the SCN circadian system to light.  相似文献   

20.
A circadian pacemaker consists of at least three essential features: the ability to generate circadian oscillations, an output signal, and the ability to be entrained by external signals. In rodents, ablation of the suprachiasmatic nucleus (SCN) results in the loss of circadian rhythms in activity. Rhythmicity can be restored by transplanting fetal SCN into the brain of the lesioned animal, demonstrating the first two of the essential pacemaker features within the grafts. External signals, such as the light/dark cycle, have not, however, been shown to entrain the restored rhythms. Melatonin injections are an effective entraining stimulus in fetal and neonatal Syrian hamsters of the same developmental ages used to provide donor tissue for transplantation. Therefore, melatonin was used to test the hypothesis that SCN grafts contain an entrainable pacemaker. Daily injections of melatonin were given to SCN-lesioned hosts beginning on the day after transplantation of fetal SCN. Two groups that received melatonin at different times of day 12 hr apart each showed significantly clustered phases but with average phases that differed by 8.67 hr. Thus melatonin was able to entrain the restored circadian activity rhythms. In contrast to these initial injections, injections given 6 weeks after transplantation were unable to entrain or phase shift the rhythms. The results demonstrate that SCN grafts contain an entrainable circadian pacemaker. In addition, the results also indicate that the fetal SCN is directly sensitive to melatonin and, as with intact hamsters, sensitivity to melatonin is lost during SCN development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号