首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Different contents of expanded graphite (EG) composite phase change material (PCM) were prepared by the melt mixing method, taking paraffin as the PCM and EG as the supporting material. Phase compositions of EG, paraffin, and EG/paraffin composite were investigated using X-ray diffraction (XRD). Microstructures of EG and EG/paraffin composite PCMs with different EG contents were observed by a scanning electron microscope (SEM). Thermal properties, such as phase-transition temperature and latent heat of the materials, were determined by differential scanning calorimetry (DSC). Mass loss and thermal properties after 100 heating cycles were measured. The results show that physical absorption exists between paraffin and EG. EG is beneficial for the PCM composite to reduce leakage of paraffin, decrease the phase change temperature and latent heat, and strengthen the thermal stability. The solid–liquid phase change latent heat of materials is larger than that of the solid–solid one. The heating cycle has little effect on the phase-transition temperature and latent heat.  相似文献   

2.
以改性膨胀蛭石为吸附材料,以月桂酸和硬脂酸为相变材料,通过熔融共混法与真空吸附法制备定型复合相变材料,然后将其掺入砂浆中制备得到蓄热砂浆。结果表明:复合相变材料经过1000次循环后相变焓为167.6 kJ/kg,变化率仅为3.6%,热稳定性良好,无渗漏现象,掺入30%体积含量复合相变材料的砂浆28 d强度为9.2 MPa。掺有该定型相变材料的蓄热砂浆具有优异的热力学性能,完全可以应用于建筑物围护结构来调节室内温度。  相似文献   

3.
Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In the present study, encapsulated phase change materials (PCMs) were used for the storage of thermal energy. Both experiments and simulation were performed to evaluate the characteristics of encapsulated PCMs. Tests were conducted in a packed bed to determine the performance of the encapsulated PCM. In the preparation of encapsulated PCMs, the coacervation technique was used. The performance of the encapsulated PCM was evaluated in terms of encapsulation ratio, hydrophilicity, and energy storage capacity. The experiments were designed, based on surface response method, to optimize the processing conditions. It was found that a higher coating to paraffin ratio led to a higher paraffin encapsulation ratio. The hydrophilicity value of encapsulated paraffin depended mainly on the ratio of paraffin to coating. The higher the ratio, the lower was its product hydrophilicity. When the paraffin to coating ratio was constant, the higher concentration of HCHO led to a lower hydrophilicity of the product. The encapsulated paraffin has shown large energy storage and release capacity (20–90 J g?1) during its phase changes depending on different ratios of paraffin to coating. Thermal cyclic test showed that encapsulated paraffin kept its geometrical profile and energy storage capacity even after 1000 cycles of operation. In the experiments and simulation of fluid heating process in encapsulated PCM charged packed bed, results showed that Eulerian granular multiphase model in FLUENT 4.47 is suitable for simulation of such a system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Solid-solid phase change materials (SSPCMs) used in thermal energy storage (TES) system attract much attention in recent days. Here, graphene nanoplatelets (GnPs) were introduced into pentaglycerine (PG) with mass ratios of 1 wt%, 2 wt%, and 4 wt% to obtain PG/GnPs PCMs. The structure and thermal property of PG/GnPs PCMs were characterized by SEM, XPS, FT-IR, POM, DSC, thermal conductivity tester, and heat transfer performance test system. The effect of GnPs on the crystallization kinetic of PG was investigated by isoconversional method. The results indicated that PG and GnPs were uniformly mixed together by physical reaction. GnPs reduced the subcooling and enhanced the thermal conductivity of the PG/GnPs. The heat transfer rate of PG/GnPs was improved during to the high thermal conductivity. Crystallization kinetic results presented that the activation energy increases with the GnP content. In summary, GnPs improved the thermal behaviors of PG.  相似文献   

6.
Microencapsulated phase change material (MEPCM) is formed by packing PCM into a microcapsule with a solid but flexible shell. MEPCM can be used to enhance liquid cooling performance considerably. In this paper, experiments on the preparation of MEPCM with a double‐layered shell have been conducted. An in‐situ polymerization microencapsulation process was used to prepare the MEPCM with melamine resin as the shell material and n‐Docosane (C22H46) as the core material. Interesting parameters like the size of the prepared MEPCM, the core mass fraction in the MEPCM, and the thermal storage capability of the prepared MEPCM have been measured and analyzed. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1): 28–37, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20138  相似文献   

7.
A composite phase change material (PCM) containing Cu nanoparticles (NPs) was prepared. XRD and TEM results showed that the Cu NPs were pure metal with irregular morphology. The diameter of Cu NPs was in the range of 5–15 nm. The composite PCM melted at the temperature of 310 K and the total phase change enthalpy was 122 J/g. The thermal conductivity of the composite PCM was reduced by Cu NPs from 0.130 W/mK to 0.102 W/mK. The as-prepared composite PCM might be an appropriate candidate for thermal protection where PCM with lower thermal conductivity is needed.  相似文献   

8.
Form-stable paraffin phase change materials (PCMs), in which the paraffin as a latent heat storage material and the polyolefins as a supporting material, have to be encapsulated because of the paraffin leakage and lipophilicity. A novel microencapsulated PCM in which form-stable paraffin is encapsulated into inorganic silica gel polymer is prepared successfully by in situ polymerization. A differential scanning calorimeter (DSC) is used to measure the thermal properties of the PCM. Moreover, the Washburn equation associated with the wetting properties of powder materials, is used to test the hydrophilic–lipophilic properties of PCM. The results indicate that the optimum microencapsulated PCM is endowed with good hydrophilicity, and its specific enthalpy maintains 123.78 J g−1.  相似文献   

9.
In this study, a periodic analysis of a greenhouse with combination of phase change material (PCM) and insulation as a north wall has been developed for thermal heating. The thermal model is based on Fourier analysis. Effect of distribution of PCM thickness on plant and room air temperature has been studied in detail. The plant and room air temperature have been evaluated with and without north wall. Numerical computations have been carried out for a typical winter day of New Delhi. On the basis of numerical results, it is inferred that (i) there is a significant effect of PCM north wall and heat capacity of plant temperature during off‐sunshine hour due to storage effect and (ii) the rate of heat flux inside greenhouse from north wall is maximum for least thickness of PCM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This work is focused on the preparation and characterization of fatty acid eutectic/polymethyl methacrylate (PMMA) form-stable phase change material (PCM). Capric acid (CA), lauric acid (LA), myristic acid (MA) and stearic acid (SA) were selected to prepare binary fatty acid eutectic for the sake of decreasing the phase change temperature. Using the method of self-polymerization, CA–LA, CA–MA, CA–SA and LA–MA eutectics acting as the heat-absorbing materials and PMMA serving as the supporting material were compounded in the ratio of 50/50 wt.%. The relations between mass fraction of LA–MA eutectic and latent heat and compressive strength of LA–MA/PMMA composite were discussed, and the feasible maximum mass fraction of LA–MA eutectic was determined to be 70%. CA–LA/PMMA, CA–MA/PMMA, CA–SA/PMMA and LA–MA/PMMA composites were examined to investigate their potential application in building energy conservation. Scanning electron microscope and polarizing optical microscope observations showed that fatty acid eutectic was coated by PMMA thus the composite remained solid when the sample was heated above the melted point of the fatty acid. Fourier-transform infrared results indicated that fatty acid and PMMA had no chemical reaction and exhibited good compatibility with each other. According to the differential scanning calorimetry results, phase change temperatures of CA–LA/PMMA, CA–MA/PMMA, CA–SA/PMMA and LA–MA/PMMA composites were 21.11 °C, 25.16 °C, 26.38 °C and 34.81 °C and their latent heat values were determined to be 76.3 kJ/kg, 69.32 kJ/kg, 59.29 kJ/kg and 80.75 kJ/kg, respectively. Moreover, thermal stability and expansibility of the form-stable PCMs were characterized by thermogravimetric analysis and volume expansion coefficient respectively, and the results indicated that the composites were available for building energy conservation.  相似文献   

11.
硅藻土是一种含量丰富的非金属矿,具有较高的孔隙率,良好的表面结构和热物理性能,因而可作为复合储热材料的载体.本文综述了复合储热材料的种类和制备工艺,并介绍了硅藻土的结构,性能和以硅藻土为载体的复合相变储热材料的研究及应用现状.  相似文献   

12.
Microcapsules containing caprylic acid and polyethylacrylate shells were prepared using an emulsion polymerization technique for thermal energy storage applications. Ethylene glycol dimethacrylate was used as a crosslinking agent. The influence of the crosslinking agent concentration on the phase change properties of microcapsules was examined. The caprylic acid microcapsules (MicroPCMs) were analyzed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and differential scanning calorimetry. The results showed that microcapsules were synthesized successfully and that the best shell material:crosslinking agent concentration ratio was 1:0.2. The melting and freezing temperatures were measured through differential scanning calorimetry analysis and found to be 13.3 and 7.1°C, respectively. The melting and crystallization heats were determined to be 77.3 and ?77.0 kJ/kg, and the mean particle diameter was 0.64 μm. The thermal cycling tests of the microcapsules were performed for 400 heating/cooling cycles, and the results indicate that the synthesized microcapsules have good thermal reliabilities. Air stability test proved that the thermal properties and physical form of microcapsules were not affected by air. We recommend the prepared thermal, air, and chemically stable caprylic acid microcapsules for thermal energy storage applications as novel microPCM with latent heat storage capacities and properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A novel shape-stabilized n-hexadecane/polyHIPE composite phase change material (PCM) was designed and thermal energy storage properties were determined. Porous carbon-based frameworks were produced by polymerization of styrene-based high internal phase emulsions (HIPEs) in existence of the surface modified montmorillonite nanoclay. The morphological and mechanical properties of the obtained polyHIPEs were investigated by scanning electron microscopy analysis and the compression test, respectively. The polyHIPE composite with the best pore morphology and the highest compression modulus was determined as a framework to prepare the form stable n-hexadecane/polyHIPE composite phase change material using the one-step impregnation method. The chemical structure and morphologic property of composite PCM was investigated by FT-IR and polarized optical microscopy analysis. Thermal stability of the form-stable PCM (FSPCM) was examined by TG analysis. The n-hexadecane fraction engaged into the carbon foam skeleton was found of as 55 wt% from TG curve. differential scanning calorimetry analysis was used for determining melting temperature and latent heat storage capacity of FSPCM and these values were determined as (26.36°C) and (143.41 J/g), respectively. The results indicated that the obtained composite material (FSPCM) has a considerable potential for low temperature (18°C-30°C) thermal energy storage applications with its thermal energy storage capacity, appropriate phase change temperatures and high thermal stability.  相似文献   

14.
This paper mainly deals with a novel homogeneous phase change process in materials (HPCP). The HPCP is analysed in detail and the expressions for one‐dimensional HPCPs are derived. It is concluded that, compared with the conventional phase change processes, the complete phase change time of HPCPs can be decreased by 60% for a spherical phase change material (PCM), 50% for a cylindrical PCM and 33% for a flat plate PCM, respectively, and the application of HPCPs to thermal energy storage systems can charge or discharge thermal energy with constant rates. Possible applications of HPCPs to thermal energy storage are simulated and further discussed using composite flat plate PCMs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Temperature fluctuations during storage and transportation are the most important factors affecting quality and shelf life of food products. Phase change materials (PCM) with their isothermal characteristics are used to control temperature in various thermal operations. In this study, octanoic acid as PCM candidate was used in a packaging material design for thermal control of a food product. The PCM candidate was microencapsulated in different shell materials in our laboratory. Among the synthesized microcapsules, microencapsulated PCM (mPCM) (ΔHm = 42.9 J/g) with styrene polymer as the shell material was selected based on its properties of being cost effective and compatibility with human health. Thermal buffering effect of PCM in bulk and microencapsulated forms was tested in a packaging design with special PCM pockets. Results showed that packages with mPCM and bulk PCM provided 8.8 and 6 hours of thermal buffering effect for 160 g of chocolate compared with the package without PCM (reference package).  相似文献   

16.
A novel form-stable composite as phase change material (PCM) for thermal energy storage was prepared by absorbing capric acid (CA) into halloysite nanotube (HNT). The composite PCM was characterized by TEM, FT-IR and DSC analysis techniques. The composite can contain capric acid as high as 60 wt% and maintain its original shape perfectly without any CA leakage after subjected to 50 melt-freeze cycles. The melting temperature and latent heat of composite (CA/HNT: 60/40 wt%) were determined as 29.34 °C and 75.52 J/g by DSC. Graphite (G) was added into the composite to improve thermal storage performance and the thermal storage and release rates were increased by 1.8 times and 1.7 times compared with the composite without graphite, respectively. Due to its high adsorption capacity of CA, high heat storage capacity, good thermal stability, low cost and simple preparation method, the composite can be considered as cost-effective latent heat storage material for practical applications such as solar energy storage, building energy conservation and agricultural greenhouse in the near future.  相似文献   

17.
设计并搭建了水平多管式相变储热系统,以水为传热流体(HTF)、石蜡为相变材料(PCM),通过实验对储热系统的具体蓄热特性和不同操作条件下HTF与PCM之间的传热特性进行定量分析,评估了HTF体积流量和进口温度对紧凑型低温相变储热系统功率输入、吸热完成时间以及储存能量的影响。该系统主要由一个聚碳酸酯壳和水平定向的多管换热器以及石蜡组成,其中石蜡相变温度约为41℃。结果表明:随着HTF进口温度或体积流量的增加,吸热完成时间减少,平均吸热功率增大,且增加速率都随着进口温度的增大而变小;HTF体积流量分别为4.5,6.0和7.5 L/min时,吸热过程耗时300.7,252.9和226.7 min;在58,64和70℃的进口温度下,吸热完成时间分别为270.1,226.7和204.9 min;提高HTF进口温度,会导致换热结束时石蜡温度与HTF出口温度出现越来越靠近的趋势,而在提高HTF体积流量时,却呈现相反的趋势。  相似文献   

18.
This paper presents a numerical investigation on the thermal performance of a solar latent heat storage unit composed of rectangular slabs combined with a flat-plate solar collector. The rectangular slabs of the storage unit are vertically arranged and filled with phase change material (PCM: RT50) dispersed with high conductive nanoparticles (Al2O3). A heat transfer fluid (HTF: water) goes flow in the solar collector and receives solar thermal energy form the absorber area, then circulates between the slabs to transfer heat by forced convection to nanoparticle-enhanced phase change material (NEPCM). A numerical model based on the finite volume method and the conservation equations was developed to model the heat transfer and flow processes in the storage unit. The developed model was validated by comparing the obtained results with the experimental, numerical and theoretical results published in the literature. The thermal performance of the investigated latent heat storage unit combined with the solar collector was evaluated under the meteorological data of a representative day of the month of July in Marrakesh city, Morocco. The effect of the dispersion of high conductive nanoparticles on the thermal behavior and storage performance was also evaluated and compared with the case of base PCM without additives.  相似文献   

19.
对高温熔融盐管壳式相变换热器进行了三维非稳态模拟研究.在考虑自然对流的情况下,模拟对比了直管式和弯管式相变换热的传热特性,考虑了流速,进口温度以及进口截面形状对储热性能的影响.结果表明,在熔化相同体积的相变材料的前提下,弯管可以缩短超过15 %的熔化时间,换热特性明显优于直管系统.分析表明,弯管更好的换热特性主要是由于弯管内的二次流加强了换热,并且弯管也增加了换热面积.根据直管相变换热器与已有实验结果的对比显示模拟结果与实验结果有一定的差距,但是变化趋势一样,因而模拟结果可为装置的优化设计提供参考依据.  相似文献   

20.
膨胀石墨基复合相变材料具有导热系数高,储能密度大以及相变过程无液体泄漏等优点,是近年来储能科学领域的研究热点.本文探讨了应用于储热系统的相变材料的性能及分类,并对膨胀石墨及其复合相变材料的制备方法进行了简要分析,最后综述了石蜡类,脂肪酸类,共晶混合物类,聚乙二醇以及乙酰胺等膨胀石墨基复合相变材料的国内外研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号