首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以活性炭作为正极,预嵌锂的中间相炭微球为负极,制成软包装锂离子电容器。在正负极活性材料质量比为1∶1的条件下,采用恒压嵌锂法对负极进行预嵌锂,嵌锂容量分别为100 mA•h/g、200 mA•h/g、300 mA•h/g。在2~4 V的电压区间内,对软包装器件进行倍率测试及高倍率下的寿命测试。测试结果显示,锂离子电容器单体电容量为4~5 F,预嵌锂容量为200 mA•h/g时电容器展现出最佳的电化学性能,首次充放电能量密度为83.7 W•h/kg(基于正负极活性质量),在倍率为120 C时,功率密度达8835.4 W/kg,能量密度保持在40.3 W•h/kg。在20 C的倍率下进行充放电寿命测试,500次循环之后,能量密度保持91.6%,1000次循环之后,能量密度保持86.5%。  相似文献   

2.
High-capacity lithium-storage materials in metal composite form are being extensively researched, which can replace the carbon-based lithium intercalation materials currently commercialized as the negative electrode of lithium rechargeable batteries. Herein, Sn nanocrystals and Sn nanocrystal/carbon composites with various particle sizes are prepared by the chemical reduction method where surfactant can control the resultant particle size because the particle size of metal-based materials is the main underlying factor for their electrochemical enhancement. The chemical reduction approach using surfactants is very effective for varying the particle size of Sn nanocrystals. Sn nanocrystals with the optimized particle size in terms of anodic properties are made into a composite with carbon acting as an agglomeration preventer as well as an electronic conductor. The controlled size of the Sn nanocrystal in the carbon is associated with their drastically improved electrochemical performance retaining above 65% of the initial capacity after 30 cycles.  相似文献   

3.
静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。  相似文献   

4.
Carbon and other platinum-supporting materials have been studied as electrode catalyst component of low-temperature fuel cells. Platinum (Pt) is commonly used as the catalyst due to its high electro-catalytic activity. Current research is now focusing on using either modified carbon-based or non-carbon-based materials as catalyst supports to enhance the catalytic performance of Pt. In recent years, Pt and Pt-alloy catalysts supported on modified carbon-based and non-carbon-based materials have received remarkable interests due to their significant properties that can contribute to the excellent fuel cell performance. Thus, it is timely to review this topic, focusing on various modified carbon-based supports and their advantages, limitations and future prospects. Non-carbon-based support for Pt and Pt-alloy catalysts will also be discussed. Firstly, this review summarises the progress to date in the development of these catalyst support materials; from carbon black to the widely explored catalyst support, graphene. Secondly, a comparison and discussion of each catalyst support in terms of morphology, electro-catalytic activity, structural characteristics, and its fuel cell performance are emphasized. All the catalyst support materials reviewed are considered to be promising, high-potential candidates that may find commercial value as catalyst support materials for fuel cells. Finally, a brief discussion on cost relating Pt based catalyst for mass production is included.  相似文献   

5.
Nowadays, renewable energy sources are taken great attention by the researchers and the investors around the world due to increasing energy demand of today's knowledge societies. Since these sources are non-continuous, the effective storage and re-use of the energy produced from renewable energy sources have great importance. Although classical energy storage systems such as lead acid batteries and Li-ion batteries can be used for this goal, the new generation energy storage system is needed for large-scale energy storage applications. In this point, vanadium redox flow batteries (VRFBs) are shinning like a star for this area. VRFBs consist of electrode, electrolyte, and membrane component. The battery electrodes as positive and negative electrodes play a key role on the performance and cyclic life of the system. In this work, electrode materials used as positive electrode, negative electrode, and both of electrodes in the latest literature were complained and presented. From graphene-coated and heteroatom-doped carbon-based electrodes to metal oxides decorated carbon-based electrodes, a large scale on the modification of carbon-based electrodes is available on the electrode materials of the VRFBs. By the discovering of novel electrode components for the battery system, the using of the VRFBs probably increase in a short time for many industrial and residential applications.  相似文献   

6.
The effect of physical and chemical properties on the performance of both positive and negative electrodes is studied for lithium‐ion (Li‐ion) batteries. These properties include the lithium diffusivity in the active electrode material, the electrical conductivity of the electrode, and the reaction rate constant at electrode active sites. The specific energy and power of the cells are determined at various discharge rates for electrodes with different properties. In addition, this study is conducted across various cell design cases. The results reveal that at moderate discharge rates, lithium diffusivity in the active negative‐electrode material has the highest impact on cell performance. The specific energy and power of the cell are improved ~11% by increasing the lithium diffusivity in the active negative‐electrode material by one order of magnitude. Around 4% improvement in the cell performance is achieved by increasing the reaction rate constant at the active sites of either electrodes by one order of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
锂离子电池商业化应用已有30多年,但目前的电池性能仍不能满足社会发展的需求。为此,须不断开发高性能的电池材料。电化学测量是电池材料开发不可或缺的关键技术。锂金属电极是锂离子电池电化学测量中最常用的参比电极,其电位稳定性将影响电化学测量结果的准确性。报道一种能提高锂金属参比电极电位稳定性的锂金属表面处理方法。将有机锌盐和氟代碳酸酯的混合溶液滴加在锂金属表面,通过锂金属与溶液组分的反应,在锂金属表面形成一层含锌锂合金和氟化锂的混合界面膜,可降低锂溶解/沉积过电位。处理得到的锂金属电极在Li//Li对称电池中用1 mA/cm2的电流及1 mA·h/cm2的容量恒电流连续充放电,该对称电池的电压稳定时间是未处理电池的2倍以上。这种锂金属电极表面处理方法可提高电极材料电化学性能测量的稳定性,有利于锂离子电池新材料的开发。  相似文献   

8.
The lithium—thionyl chloride nonaqueous cell system is a recent development. Low atomic weight and high electrode potential make lithium unique as an anode in energy devices. Preparation of the anode, cathode, and the electrolyte is reviewed. The construction of the cell, its performance characteristics, uses, etc., are also surveyed.  相似文献   

9.
锂离子电池尽管已成为便携式电子设备的主流电源,也是电动汽车、混合动力汽车等电源的主要选择之一,但依然存在使用过程中因形成锂枝晶而发生内短路的安全隐患。本文设计了一个宏微观实验研究商业用锂离子电池电极材料的充放电循环性能。在常温小电流充放电条件下,实时原位地观测锂枝晶的产生、生长、消融以及死锂残留等过程。实验结果揭示了锂枝晶不仅仅只是大电流过充或低温充电状态下的产物,常温常态小电流充电条件下依然能够生成锂枝晶。实验发现:锂枝晶出现在充电后期,随后直线伸长,尖端区域形貌保持不变;放电时,锂枝晶逐渐消融,尖端区域形貌依然不变,放电结束后电极上有死锂残留。  相似文献   

10.
Electrode morphology has significant influence on the performance of lithium‐ion batteries in that it controls electrical conductivity and electrode utilization by establishing electrical connectivity in the electrode. The present study investigates the effect of the electrode morphology on battery performance by combining two different mathematical models. First, a two‐dimensional, direct numerical simulation (DNS) model is introduced, which stochastically generates electrode morphology and calculates electrical conduction and electrode utilization. Various simulations are conducted to evaluate the effect of the active particle coating, conductive agent loading, particle size, and electrode compression by using the DNS model. Second, data acquired from the DNS model are applied to the blended‐electrode model to evaluate battery performance. Calculation result confirms that electrode morphologies have significant effects on both capacity and power of lithium‐ion batteries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
本文回顾了环三磷腈及其衍生物的合成,阐述了其在锂离子电池电解液,正负极材料等关键材料方面的应用研究进展,并进行了相应的展望.随着锂离子电池在高容量动力及储能领域中的广泛应用,电池的安全性问题日益凸显,材料安全性是电池安全性的基本保证.磷腈化合物由于其特殊的组成和结构,具有高效阻燃与电化学稳定性,在用于改善锂离子电池安全性方面受到越来越广泛的关注.在锂离子电池电解液添加剂和共溶剂的研究中发现,磷腈化合物不仅可以改善电解液的热稳定性和阻燃性能,还可以提高电池的充放电电压和循环稳定性;同时,也可以作为正负极材料的重要组分,改善电极材料的安全性.在锂离子电池安全性领域中具有较好的研究价值和实用意义.  相似文献   

12.
锂离子电池由于具有高能量密度、高循环寿命、安全等诸多优点,是现代生活中最受欢迎的便携式电源,有着广阔的应用前景。为了充分发挥锂离子电池的潜力,推进其实用化进程,需要深入研究电极反应历程。作为锂离子电池研究的得力助手,原子力显微镜(AFM)能通过其针尖原子与电极表面原子之间的相互作用,实时检测电极表面的微观形貌,在纳米尺度上提供电极表面的物理化学信息,为电极材料和电解液的优化改性提供实验依据。本文综述了AFM在锂离子电池研究中的最新应用进展,包括电化学反应条件下电极材料的形貌变化、纳米力学性能和电学性能等,说明AFM将会进一步推动锂离子电池的研究进展。  相似文献   

13.
随着能源和环境问题的日益突出以及电子电动设备的迅猛发展,传统锂离子电池已经越来越难以满足人们对于高能量密度电池的需求.锂硫电池因其能量密度高,成本低以及无污染等优点,被认为是极有潜力的下一代高能量密度储能体系.然而由于锂硫电池中正极材料电子,离子电导率低,充放电过程中电极体积变化大,聚硫化物等中间产物的溶解和伴随的"穿梭效应"以及锂负极的使用所带来的锂枝晶等一系列问题,导致锂硫电池的循环寿命差,阻碍其产业化的应用发展.锂硫电池体系中碳质材料的引入可以提高材料导电性,缓冲体积变化,抑制聚硫化物穿梭,是提高其电化学性能的有效手段.本文综述了近年来最新的锂硫电池中碳质材料的应用研究进展,包括硫/碳复合物,柔性自支撑电池和碳质锂硫电池负极,分析了其对锂硫电池性能提升的作用机理,并展望了锂硫电池将来可能的发展方向.  相似文献   

14.
《Journal of power sources》2002,111(2):193-209
Despite considerable efforts to find other substituents, carbon still remains the only commercially viable negative electrode (anode) material for Li-on batteries. Present work aimed at understanding, characterising and improving the performance of carbon anode materials is reviewed. A brief historical background of developments in carbon host lattices is presented. A wide range of carbon materials from amorphous to highly oriented graphitic materials and the techniques employed in characterisation of the lithium insertion/de-insertion process are outlined. Fundamental investigations of the electrochemical process on natural graphite, as well as highly oriented pyrolitic graphite materials, are then comprehensively reviewed. The problems and prospects of different hard carbon materials which increased battery capacity are then discussed. A variety of new carbon materials and carbon-based composites are also introduced. The critical review ends with an overview of the present status of carbon materials and their role in Li-ion battery systems for different potential applications.  相似文献   

15.
It is shown that the rate performance of a lithium battery composite electrode may be compromised by poor internal connectivity due to defects and inhomogeneities introduced during electrode fabrication or subsequent handling. Application of a thin conductive coating to the top surface of the electrode or to the separator surface in contact with the electrode improves the performance by providing alternative current paths to partially isolated particles of electroactive material. Mechanistic implications are discussed and strategies for improvement in electrode design and fabrication are presented.  相似文献   

16.
Electrochemical characteristics of various carbon materials have been investigated for application as a negative electrode material in lithium secondary batteries with long cycle life. Natural graphite electrodes show large discharge capacity in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). However, their charge/discharge performance is largely influenced by electrolytes. There is a possibility that a rapid rise in the discharge potential of the natural graphite electrode at the end of the discharge would cause a side reaction such as decomposition of the electrolyte because of an unequal reaction over an electrode. In order to improve the cycle performance of natural graphite electrodes, mixtures of graphite and coke electrodes are prepared by adding coke to natural graphite. It is found that the mixture of graphite and coke electrode shows a better cycle performance than that of a natural graphite or coke electrode. The deterioration ratio of the mixture of graphite and coke negative electrode measured by using AA-type test cells is 0.057%/cycle up to the 500th cycle. The mixture of graphite and coke is a promising material for a negative electrode in long-life lithium secondary batteries for energy storage systems because of its excellent cycle performance and large discharge capacity.  相似文献   

17.
随着国家政策对电动汽车的支持力度不断加大,锂离子电池的电化学性能瓶颈愈发凸显。本文综述了锂离子电池正极材料钴酸锂、锰酸锂、磷酸铁锂及三元材料在掺杂和表面包覆两种工艺对电池电化学方面的影响,并展望了掺杂和表面包覆两种工艺未来的研究方向。  相似文献   

18.
The electrochemical behavior of propylene carbonate (PC)-based electrolytes with and without butyl sultone (BS) on graphite electrode and the performance of lithium ion batteries with these electrolytes were studied with cyclic voltammetry (CV), energy dispersive spectroscopy (EDS), as well as density functional theory (DFT) calculation. It is found that the co-insertion of PC with lithium ions into graphite electrode can be inhibited to a great extent by adjusting the composition of solvent in electrolytes. With the application of PC in the electrolyte without any additive, the discharge capacity of lithium ion battery is improved under high temperature or low temperature, however it decays under room temperature compared with the battery without PC. This drawback can be overcome by using BS as a solid electrolyte interphase (SEI) forming additive. BS has a lower LUMO energy and can be more easily electro-reduced than other components of solvent in electrolyte on a graphite electrode, forming a stable SEI film. With the application of BS in the electrolyte, the discharge capacity and cyclic stability of lithium ion battery is improved significantly under room temperature.  相似文献   

19.
《Journal of power sources》1995,54(2):411-415
Cabonaceous materials from different types are used in polymer electrolyte-based lithium cells in order to evaluate their electrochemical performance during lithium storage in the application as the negative electrode in lithium-ion-type batteries. The formation of a passivating film during the first cathodic polarization may account for the low faradaic yield of the first cycle. It also plays an important role in the stabilization of the carbon/polymer electrolyte interface. Non-graphitized mesocarbon micro beads lead to a higher reversible capacity of 410 mAh/g than the graphitized one. It is suggested that lithium could be reversibly stored as a multilayer ‘deposit’ at the carbon surface. A model of epitaxial lithium electroplating is presented.  相似文献   

20.
在现有商品化二次电池中,锂离子电池的比能量最高、循环性能最好,而且因其电极材料选择的多样性,作为储能电池具有广阔的应用前景。锂离子电池发展面临一些问题:比能量、比功率和循环寿命有待提升,安全性还没有可靠保证,制造成本过高,等等。针对这些问题,人们从电池材料选择、电池结构设计、电池制备装配与工艺、电池管理系统等方面探索解决方案。本文结合作者所在研究团队开展的工作,介绍锂离子电池关键材料(正极、负极和电解质)的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号