首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
随着航天遥感技术的飞速发展,遥感图像采集数据耗时长、图像数据量大等问题的出现对采样设备和存储设备提出了更高的性能要求。为了解决以上问题,在气象卫星的红外遥感图像的处理中采用了压缩感知理论。通过Matlab建模和仿真,分析了正交匹配追踪算法、梯度投影算法、子空间追踪算法、平滑l0范数算法的性能,并对大量红外图像以不同的采样率进行采样压缩,然后使用多种重构算法重构图像。对比试验显示,几种算法都能以较低的采样率得到完整的红外图像,但平滑l0范数算法在重构精度和运行时间方面都优于其余几种算法,证明了压缩感知在红外遥感图像的处理中具有较大的实用价值。  相似文献   

2.
在对非合作目标的逆合成孔径雷达(ISAR)成像中,快速成像甚至实时成像具有非同寻常的意义。平滑l0范数(SL0)算法是一种计算快速的压缩感知类参数重构算法,在ISAR成像中得到关注和应用。常规SL0算法在迭代过程中,无论参数重构的收敛效果如何,每轮内循环的迭代次数都是固定的预设次数,导致多次内循环无效进行。文中针对常规SL0算法迭代收敛机制僵化的问题,提出一种二维阈值平滑l0范数(2D T-SL0)快速算法,用于ISAR成像中的强散射点提取。该算法引入迭代效率指标来评定内循环的有效性。在内循环的迭代过程中,若其迭代效率指标高于设定阈值,说明参数估计值能得到优化,该轮内循环继续进行;反之说明参数估计值已接近收敛,则终止该轮内循环,进入下一轮内循环。ISAR成像实验结果表明,相比常规SL0算法,2D T-SL0算法能减少很多无效迭代,明显降低运算量。在成像效果方面,2D T-SL0算法与常规SL0算法相当,明显好于传统的距离-多普勒(R-D)算法和旋转不变参数估计(ESPRIT)算法。  相似文献   

3.
SL0算法是一种基于近似l0范数的压缩感知信号重建算法,其思想是用一个光滑函数来近似l0范数,然后求解一个优化问题。目前采用的光滑函数都是高斯函数族,文中突破了以往采用高斯函数族近似l0范数,提出了采用复合三角函数作为近似估计l0范数的函数,然后结合修正牛顿法和阻尼牛顿法提出一种更精确的重建算法DNSL0。实验结果表明,在相同测试环境下,DNSL0算法在峰值信噪比和匹配度方面比SL0算法和NSL0算法都有了大幅提高。  相似文献   

4.
基于压缩感知的矩阵型联合SAR成像与自聚焦算法   总被引:1,自引:0,他引:1       下载免费PDF全文
模型准确情况下,压缩感知在合成孔径雷达成像中得到良好应用;但在实际情况中,模型会存在一定误差,这些误差造成图像偏离真实位置、引起散焦降低成像质量.本文提出一种矩阵型联合CS-SAR成像与自聚焦算法,该算法在CS-SAR成像重构方法方面,基于光滑l0范数方法提出了矩阵型正则化光滑l0范数重构方法,该方法具有较强容错能力并能直接重构矩阵型信号,能克服现有联合CS-SAR成像与自聚焦算法在计算效率方面的缺陷.最后,通过仿真验证了所提算法的有效性.  相似文献   

5.
基于近似l0范数的稳健稀疏重构算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对测量值受噪声污染的稀疏重构问题,本文提出了稳健近似l0范数最小化算法.该算法首先利用反正切函数近似l0范数,然后建立基于近似l0范数的含噪稀疏重构模型,最后通过拟牛顿法求解该模型,并分析了算法的收敛性.数值仿真表明,本文提出的算法重构稀疏向量时需要较少的测量值,且具有较高的计算精度.  相似文献   

6.
SL0算法是一种基于近似L0范数的压缩感知信号重建算法,它采用最速下降法和梯度投影原理,逐步逼近最优解,具有匹配度高、重建时间短、计算量低、不需要信号的稀疏度这个先验条件等优点。但是,它的迭代方向为负梯度方向,存在“锯齿效应”,并且SL0算法及其改进算法(NSL0)中的连续函数“陡峭性”不大,使近似L0范数的估计不精确、收敛速度慢。本文采用“陡峭性”大的近似双曲正切函数,结合修正牛顿法和阻尼牛顿法,提出一种更快速高效的信号重建算法(ANSL0)。数值计算结果表明,在相同的条件下,相比SL0和NSL0算法,ANSL0算法在匹配度、峰值信噪比和信噪比方面都有了较大提高。   相似文献   

7.
李志刚 《信息技术》2013,(6):145-148
重构算法是压缩感知技术的重要环节之一,文中针对现有重构算法收敛速度较慢的问题,提出了一种适用于压缩感知的快速重构算法。该方法的思想是在求解过程中,设计一种有效的步长迭代方案,以此来更新由梯度Lipschitz指数确定的迭代步长,再利用更新后的步长对原始信号的稀疏域表示向量进行迭代收缩,提高收敛速度。实验结果表明,相比传统的正交匹配追踪(OMP)算法、固定步长的l1范数重构算法,该方法在保证信号恢复精度的前提下,具有更快的收敛速度和更高的重构精度。  相似文献   

8.
基于遗传算法的零范数压缩感知图像重构方法研究   总被引:1,自引:0,他引:1  
徐静 《现代电子技术》2011,34(16):52-54
近年来由Donoho和Candes等人提出的压缩感知图像处理有效地解决了图像高速采样与压缩重构之间的瓶颈问题,使得采样与压缩同时进行,并有效利用采样所得到的数据,用于后期的图像重构中。目前文献中使用的重构算法很多,如最优l1范数法、匹配追踪等贪婪算法、迭代阈值法等,但这些方法都是次优化算法,没有从压缩感知最初需要解决的问题出发。在此给出的算法是从压缩感知重构的最初需要解决的问题出发,寻找一种能够解决最优l0范数的多峰优化问题的算法。实验结果也证明了该方法的可行性。  相似文献   

9.
传统的压缩感知模型和重构方法,虽能有效减少数据量,但压缩和重构性能不佳,故该文提出一种基于自适应分块和联合优化光滑l0范数(SL0)的2维压缩感知算法。压缩过程利用灰度熵和四叉树算法进行自适应分块和采样率分配,同时对压缩模型改进,使用混沌循环矩阵作为测量矩阵,提升了压缩性能。重构过程基于SL0算法,采用陡峭性更高的拟合函数,结合拟牛顿法和动态迭代的方案提高重构质量和效率。该算法峰值信噪比和结构相似性指数相比现有算法平均提升了5.44 dB和21.08%,平均计算时间仅需1.59 s,表明该算法能稳定、快速地实现图像的压缩感知和精确重构,为压缩感知和图像重构提供了新方法。  相似文献   

10.
王田川 《电视技术》2013,37(11):39-42
压缩感知技术突破了奈奎斯特准则的局限性,在图像处理方面有着广泛的应用。在精典TV重构算法的基础上通过对测量矩阵与迭代过程加以改进,以测量值基本逆变换(IY)作为迭代初值的IY-TV重构算法;TV算法有利于去除信号的中噪声,在迭代过程中与IY变换图像差值相联合重建原始信号。测量矩阵直接影响图像的重构质量,设计与该算法相适应的测量矩阵以提取更多的基本信息。实验表明,该算法可以在较低采样率时,同样重构出较高的图像质量。  相似文献   

11.
针对在低快拍以及导向矢量存在误差等情况下自适应波束形成鲁棒性下降的问题,该文提出一种基于压缩感知(CS)的单通道鲁棒波束形成算法。首先提出一种新的单通道阵列体制,建立阵列信号压缩感知模型,并验证其感知矩阵满足约束等容(RIP)条件,在此基础上,采用快速的鲁棒平滑L0(RSL0)算法重构信号干扰矩阵,最后以表征阵列鲁棒性的阵列灵敏度作为目标函数,以干扰矩阵作为约束条件,形成有效波束。计算机仿真表明算法只需一个射频通道,即可在低快拍下有效抑制相干、非相干干扰信号,并可避免因通道间不一致造成的鲁棒性问题,验证了算法的有效性和优越性。  相似文献   

12.
针对分块压缩感知(BCS)重建图像质量较差问题,该文提出一种最小化l0范数的分块压缩感知全变差(TV)正则化迭代阈值图像重构算法(BCS-TVIT)。BCS-TVIT算法考虑图像的局部平滑、有界变差等性质,将最小化l0范数与图像的全变差TV正则项结合,构建目标函数。针对目标函数中l0范数项和分块测量约束项无法直接优化问题,采用迭代阈值法使重构图像l0范数最小化,并通过凸集投影保证满足约束条件,完成了目标函数的优化求解。实验表明,与基于l0范数最小化的分块压缩感知平滑投影算法(BCS-SPL)相比,BCS-TVIT算法重构图像峰值信噪比提高2 dB,能消除BCS-SPL的“亮斑”效应,且在视觉效果上明显优于BCS-SPL算法;与最小全变差算法相比,BCS-TVIT算法重构图像峰值信噪比提升1 dB,且能降低重构时间约2个数量级。  相似文献   

13.
随机噪声雷达通常利用时域相关完成脉冲压缩从而进行目标检测。该文根据压缩感知理论提出一种适用于噪声雷达目标检测的新算法,它用低维投影测量和信号重建取代了传统的相关操作和压缩处理,将大量运算转移到后期处理。该算法以噪声雷达所检测的目标空间分布满足稀疏性为前提;利用发射信号形成卷积矩阵,然后通过随机抽取卷积矩阵的行构建测量矩阵;并采用迭代收缩阈值算法实现目标信号重建。该文对算法作了详细的理论推导,形成完整的实现框架。仿真实验验证了算法的有效性,并分析了对处理结果影响较大的因素。该算法能够有效地重建目标,具有良好的运算效率。与时域相关法相比,大幅度减小了目标检测误差,有效抑制了输出旁瓣,并保持了信号的相位特性。  相似文献   

14.
1-Bit压缩感知(CS)是压缩感知理论的一个重要分支。该领域中二进制迭代硬阈值(BIHT)算法重构精度高且一致性好,是一种有效的重构算法。该文针对BIHT算法重构过程需要信号稀疏度为先验信息的问题,提出一种稀疏度自适应二进制迭代硬阈值算法,简称为SABIHT算法。该算法修正了BIHT算法,首先通过自适应过程自动调节硬阈值参数,然后利用测试条件估计信号的稀疏度,最终实现不需要确切信号稀疏度的1-Bit压缩感知盲重构。理论分析和仿真结果表明,该算法较好地实现了未知信号稀疏度的精确重建,并且与BIHT算法相比重构精度及算法复杂度均相当。  相似文献   

15.
该文提出一种基于压缩感知(Compressive Sensing, CS)的恒虚警率(Constant False Alarm Rate, CFAR)目标检测算法,首先分析了目标在距离单元上具有稀疏特性,并构造了目标回波的稀疏字典,设计特定的测量矩阵以及基于CS的CFAR检测结构,然后实现了对回波信号的压缩测量和CFAR检测,无需对回波信号重构。该文提出的算法具有很好的降噪性能并提高了检测效率,可以对低信噪比、低信杂比信号成功检测。仿真结果表明:当信噪比为-14 dB,信杂比为-10 dB时,该算法与传统匹配滤波检测算法相比,减少了一半数据运算量,性能明显优于压缩匹配滤波检测算法。  相似文献   

16.
王汝言  吴晴  熊余  谢雨  赵莹 《电子与信息学报》2013,35(11):2596-2601
为了提高故障定位性能,降低单一判别参数在单位过程中的约束,该文提出一种基于压缩感知和信息熵差的多参数链路故障定位算法。该算法首先利用贝叶斯网络进行快速故障预测,其次引入参数故障覆盖范围,利用压缩感知进行故障筛选,最后定义参数故障信息熵差完成根源故障定位。仿真结果表明,该算法预测出的故障集合具有可压缩性,筛选后的故障集合保留了真实故障,定位时具有较高的故障检测率和较低的故障误检率。  相似文献   

17.
基于压缩感知(CS)的合成孔径雷达成像方法可以显著减少数据采样时间、数据量以及节省信号带宽。然而,基于CS的方法对噪声和杂波相当敏感,在信噪比较低的时候,成像质量较差。该文结合CS理论提出了合成孔径雷达中的随机孔径贝叶斯压缩感知(BCS)高分辨2维成像方法。在距离向应用CS减少采样数据的同时,在方位向随机抽取部分孔径位置发射和接收信号,以少量的测量孔径和测量数据获得重建目标空间的足够信息。基于贝叶斯的分析方法由于考虑了成像场景中的杂波以及压缩采样过程中的加性噪声,因而能够更好地重建目标空间。仿真结果表明,基于贝叶斯方法得到的图像比基于FFT方法得到的图像更加尖锐,比基于CS方法得到的图像更加稀疏,因而具有更高的分辨率。  相似文献   

18.
该文针对高光谱数据的线性混合模型,提出一种简单有效的谱间压缩感知下高光谱数据的重构方案。该方案不同于传统的压缩感知重构方法直接重构高光谱数据,而是将高光谱数据分离成端元和丰度分别进行重构,然后利用重构的端元和丰度信息合成高光谱数据。实验结果表明,该方案的重构质量明显优于标准压缩感知重构方法,并且运算速度具有极大提升,同时便于获得端元和丰度信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号