首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coplanar waveguide low-pass filter (LPF) using two different LPF unit cells (LUCs) and a small defected ground structure (DGS) unit cell (DUC) is presented. By cascading two LUCs, which are different in structure and harmonic passbands, and combining a dumbbell-like-shaped DUC to the cascaded LPF, we extended the stopband to seven times the cutoff frequency. The proposed LPF is superior to the conventionally cascaded LPF, in which the same LUCs are used, in reduction of the harmonic passbands and the size. The fabricated LPF shows a compact size of 18.2mm times 11mm, the cutoff frequency of 3GHz, and the sharp skirt response like a fifth-order LPF with two notch frequencies. The measured frequency responses agree well with the simulated ones  相似文献   

2.
In this paper, a compact microstrip lowpass filter (LPF) using triangle-shaped resonators is presented. The designed LPF includes three symmetric triangle-shaped resonators to provide a suitable passband and sharp response. A suppressing unit composed of several suppressing cells is designed to obtain a wide rejection band and low insertion loss in the passband. The fabricated LPF has been measured and indicts that it has −3 dB cut off frequency at 5.15 GHz. The rejection band has been expended from 5.51 GHz to 43.2 GHz with maximally flat return loss in this region nearby to 0 dB. Also, simulation and experimental results show that the proposed filter has a very flat group delay in the passband, which is the minimum value in comparison with the published works since 2017.  相似文献   

3.
Hayati  Mohsen  Zarghami  Sepehr  Shama  Farzin 《Wireless Networks》2021,27(2):1203-1213

In this paper, a new compact size microstrip lowpass filter (LPF) with a very sharp roll-off is presented to apply in the modern wireless networks. The proposed LPF is designed using the series main resonators with meandered lines based on inductor-capacitor (LC) equivalent circuit analysis. The main goal is to achieve maximum-sharp roll-off by maintaining a wide stopband bandwidth and high return loss (RL). The main resonator of the proposed filter is consisted of two meandered line hairpin resonators (MLHR), and a meandered line T-shaped resonator (MLTR). The designed suppressor is composed of two coupled radial stubs to create a wide stopband. Low return loss in the passband, which has been created by the main resonator, is resolved by the suppressor structure with high return loss. The measured results show a ??3 dB cut-off frequency of 1.93 GHz. The very sharp transition band starts at 1.93 to 1.97 GHz (from ??3 to ??20 dB). The stopband is from 1.97 to 19.9 GHz (with the suppression level of ??20 dB). Also, the total size of the proposed LPF is only 13.3?×?10.1 mm2.

  相似文献   

4.
In this paper, a compact lowpass filter (LPF) with ultra-wide rejection band has been presented. In fact, a novel meandered semi-hairpin resonator has been used and the stopband characteristics have been improved by using a combinatorial suppressing unit. The suppressing unit contains a combination between T-shaped and semi-circular patches, which are loaded symmetrically to the designed resonator. For the proposed LPF, the-3 dB cut-off frequency has been adjusted to 2.2 GHz. After simulations, the proposed LPF has been fabricated and tested. The experimental results validated that the rejection bandwidth is expanded from 2.471 GHz to 28.62 GHz with corresponding attenuation level of −20 dB. The transition band is only 0.271 GHz from 2.2 GHz to 2.471 GHz with corresponding attenuation levels of −3 dB to −20 dB, respectively. In addition, the measured maximum insertion loss and return loss in the passband, from DC to 2.04 GHz (93% of the passband region) are 0.2 dB and 17 dB, respectively.  相似文献   

5.
A synthesis method to design a defected ground structures (DGS)-based Bessel low-pass filter (LPF) using a triangular and an open-square (OS)-type DGS is reported. For the five-pole Bessel LPF at fc = 2.5 GHz, we get 10.6 dB/GHz selectivity using the triangular DGS; while the OS-type DGS provides 39 dB/GHz selectivity. For these two filters, the 10 dB impedance matching BW is 76% and 84%, respectively. It is a much wider BW that is obtained for a lumped element Bessel LPF. The maximum group delay (GD) variation within the pass band is 25pS and 28pS, respectively. The 20 dB rejection BW can be increased from 5.8 GHz to 18.8 GHz with increase in the order of filter from 5 to 11. We have also presented the design of a compact five-pole DGS-based elliptic filter with selectivity 38.2 dB/GHz and 17.8 dB return loss. Results on the DGS-based elliptic filter, Butterworth and Chebyshev filters are also presented. The experimental results are compared against the recently reported LPFs. Our reported filters perform better with respect to selectivity and group delay variation. The flatter GD and high selectivity, along with a wide 10 dB impedance matching BW, make the DGS Bessel filter a candidate for high-speed data communication, front end of a wideband communication system and efficiency improvement of a power amplifier.  相似文献   

6.
This letter presents a novel low-pass filter with an ultra-wide stopband. The proposed filter is comprised of a new cross-shape defected ground structure (CSDGS). By using this structure, the filter not only supports conventional DGS performances with a sharp rejection, but also exhibits an ultra-wide stopband. For the deigned low-pass filter, an insertion loss of less than 2dB from dc to 3.5GHz and the rejection is better than 20dB from 4.3 to 15.8GHz. Predicted performances show widened and deepened stopband beyond the low passband. Furthermore, it is confirmed by measurement.  相似文献   

7.
提出了一种新型一维周期缺陷地面结构(DGS)单元。文中给出了3个不同尺寸单元的5参数变化曲线,并使用DGS单元进行级联,形成一种补偿微带线。设计了一个低通滤波器,计算和测试结果显示该结构单元的截止频率由结构单元的物理尺寸决定,单元级联形成的多级低通滤波器具有良好的带通、带阻和谐波抑制特性。  相似文献   

8.
This article introduces a new design technique of low-pass filter using cascaded square open loop resonator (SOLR) for the multi-wireless communication system. In the design procedure, a half-wavelength SOLR is realized with 6 GHz to meet the desired LPF cut off frequency. As the resonator is fed by a direct connection of 50-ohm input/output ports, the structure is directly transferred into a second-order low-pass filter with elliptic behavior. An equivalent circuit is extracted and its lumped elements are computed to support the proposed second-order LPF. Based on the equivalent circuit, highly selective third and fifth-order LPFs with wide rejection band are developed. To achieve this development several SOLR are cascaded by a direct connection. The designed filters are implemented on a grounded substrate which has relative permittivity of 6.15 and thickness of 0.508 mm. To verify the design concept, a third-order LPF using two cascaded SOLRs is designed, simulated, fabricated and measured. The filter responses obtained from theory, simulation, and measurement show good agreement. The filter has very small circuit area about 31 mm2 excluding the input/output feeding ports.  相似文献   

9.
This paper reports the design of a compact low pass filter (LPF) with wide stop band region using tri-section stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm × 20 mm × 0.78 mm which is 0.1λ × 0.066λ × 0.0026λ at 1 GHz.  相似文献   

10.
A novel Hilbert-shaped complementary single split ring resonator (H-CSSRR) with an alterative split gap was initially presented and studied. Transmission characteristics of several CSSRR cells were assessed by full-wave electromagnetic (EM) simulation and analyzed by electrical simulation (equivalent circuit model). Miniaturization mechanism as well as effective EM parameters retrieval is also involved. Comparing to conventional CSSRR, proposed H-CSSRR was demonstrated with a merit of lower primary transmission zero realized by negative effective permittivity and multi-resonance behavior attributing to self-similarity of Hilbert geometry. For application, a tunable assembled low-pass filter (LPF) by periodically loading H-CSSRR cells and open stubs is designed, fabricated and measured. Measurement results indicate that the designed LPF has many good performances such as relative low insertion loss (maximum 0.59 dB) in passband, ultra-wide stop-band characterized by 20 dB insertion loss (from 2.45 to 25 GHz) as well as steep rejection with sharp transition band (2.15–2.45 GHz) out of band. Excellent property and consistent numerical and experimental results of the developed LPF have confirmed the effectiveness of this design concept.  相似文献   

11.
介绍了一种基于低温共烧陶瓷(LTCC)工艺研制而成的小型化半集总高隔离度双工器.该双工器由L波段集总参数低通滤波器和X波段阶跃阻抗( SIR)分布参数带通滤波器组成.通过电磁仿真软件的仿真优化,实际加工滤波器的测试结果与软件仿真结果吻合.其中低通滤波器1dB截止频率为1.46GHz,带通滤波器中心频率为8.3GHz,1dB带宽为0.6GHz,通带内插损小于3.5dB,X波段端口对L波段端口隔离度大于60dB.该小型化LTCC双工器已成功应用于某毫米波战场识别系统的T/R组件中.  相似文献   

12.
黄文  李靓  董金生  谭菲  任仪 《电子与信息学报》2022,44(10):3666-3672
该文提出一种基于谐振器慢波传输线的小型化宽阻带谐波抑制功分器,该谐振器慢波传输线由矩形谐振器、T型谐振器和蛇形线构成,来取代功分器中的1/4波长传统微带传输线。所设计制作的功分器,其尺寸仅为传统微带功分器的37.4%。实验结果表明,该功分器回波损耗大于10 dB的带宽范围为0.1~1.19 GHz,在2.2~11.05 GHz频率范围内衰减大于20 dB,具有较宽的阻带从而具有抑制谐波效果。仿真和测试结果较为吻合,验证了所提设计方法的有效性。  相似文献   

13.
邢琼  陈明 《现代雷达》2020,42(1):67-70
为有效减小X波段基片集成波导(SIW)滤波器的尺寸和插入损耗,提出了基于四分之一模基片集成波导(QMSIW)和共面波导(CPW)混合结构的小型化带通滤波器。为了提高滤波器的选择性和带外抑制,将两个CPW合并到两个级联的QMSIW谐振器中,由于两个CPW谐振器之间的耦合是电耦合,有助于产生两个传输零点,因而具有较高的选择性。该小型化滤波器尺寸仅为8.1 mm×15.4 mm,中心频率为8.7 GHz,相对带宽是16.1%,仿真测得插入损耗为0.83 dB,带外抑制大于40 dB。  相似文献   

14.
Design of Low-Pass Filters Using Defected Ground Structure   总被引:5,自引:0,他引:5  
A method to design low-pass filters (LPF) having a defected ground structure (DGS) and broadened transmission-line elements is proposed. The previously presented technique for obtaining a three-stage LPF using DGS by Lim is generalized to propose a method that can be applied in design$N$-pole LPFs for$ Nleq5$. As an example, a five-pole LPF having a DGS is designed and measured. Accurate curve-fitting results and the successive design process to determine the required size of the DGS corresponding to the LPF prototype elements are described. The proposed LPF having a DGS, called a DGS-LPF, includes transmission-line elements with very low impedance instead of open stubs in realizing the required shunt capacitance. Therefore, open stubs, tee- or cross-junction elements, and high-impedance line sections are not required for the proposed LPF, while they all have been essential in conventional LPFs. Due to the widely broadened transmission-line elements, the size of the DGS-LPF is compact.  相似文献   

15.
A compact double equilateral U-shaped defected ground structure (DGS) unit is proposed. In contrast to a single finite attenuation pole characteristic offered by the conventional dumbbell DGS, the proposed DGS unit provides dual finite attenuation poles that can be independently controlled by the DGS lengths. A 2.4-GHz microstrip lowpass filter using five cascaded double U-shaped DGS units is designed and compared with conventional DGS lowpass filters. This low pass filter achieves a wide stopband with overall 30-dB attenuation up-to10 GHz and more than 42% size diminution.  相似文献   

16.
A new compact LTCC bandpass filter using negative coupling   总被引:1,自引:0,他引:1  
This letter presents the design and realization of a new compact bandpass filter (BPF) fabricated on multilayered ceramic substrates. This BPF features coupled resonators with negative coupling coefficients. A BPF with center frequency 2.45 GHz is designed and fabricated. Its size is only 2.0 mm/spl times/1.8 mm/spl times/0.67 mm when implemented by a standard low temperature co-fired ceramic technology. The size reduction is due to the higher coupling coefficient between the negatively-coupled resonators than the positively-coupled ones, allowing tighter space between the resonators. The measured insertion losses of the previous BPF were less than 3dB and return losses more than 18dB in the passband. The measured result agrees very well with the electromagnetic (EM) designed response.  相似文献   

17.
In this paper, a compact microstrip lowpass filter (LPF) is designed, analyzed, simulated, and tested. The proposed design that consists of a basic part in the central section of the structure and two parts of suppression of harmonics that are inserted in the first and last sections of the basic part, have wide-stop band, high suppression factor (−38 dB attenuation level from 2.4 GHz up to 27.4 GHz), low normalized size and sharp roll-off. The proposed LPF has a −3 dB cut-off frequency of 2.4 GHz, a wide stopband bandwidth around 11th harmonic suppression and an insertion loss less than 0.1 dB at passband. This filter has been fabricated and tested and good agreement is observed between the simulated and measured results.  相似文献   

18.
通过在阶梯阻抗谐振器(Stepped Impedance Resonators, SIR)上加载开口谐振环缺陷地结构(Split- Ring Resonator Defected Ground Structure, SRR-DGS),设计了一款具有高选择性和较好带外抑制性能的带通滤波器。 测试结果表明,该滤波器的3 dB 工作频带为2. 56 ~2. 77 GHz (7. 9%),带内最大插入损耗为0. 8 dB。此外,在通带 两侧各有两个传输零点,分别位于2. 17 GHz、2. 48 GHz、2. 86 GHz 和3. 81 GHz,带外抑制均大于30 dB,表明该滤波 器具有较好的带外抑制特性。同时,仿真与测试结果吻合较好,验证了该滤波器设计方法的有效性。  相似文献   

19.
张胜  季超  王康 《压电与声光》2021,43(1):21-24
提出了一种表面刻有一对互补开环谐振器(CSRR)的45°扇形基片集成波导谐振腔(SSIWR),设计并制作了一款结构紧凑且具有高选择性的双层双频平衡带通滤波器.分别利用具有带通特性的CSRR和谐振腔内的TM220模实现了差模双频响应;模式间的耦合以及缺陷地结构(DGS)的引入使得滤波器在通带附近产生4个传输零点,提高了带...  相似文献   

20.
A compact microstrip lowpass filter (LPF) with an elliptic function response is proposed. A high equivalent capacitance and inductance between the structures of the resonator result in the sharp transition band of 0.04 GHz from 4 GHz to 4.04 GHz with an attenuation level of ?3 dB and ?20 dB, respectively. To improve the LPF rejection band, multiple open stubs are connected to the proposed resonator. A filter with a 3‐dB cut‐off frequency at 4 GHz is designed, fabricated, and measured, and agreement between the measured and simulated results is achieved. The results show that a stopband bandwidth of 131% with a suppression level better than ?20 dB is obtained while achieving a compact size with a wide stopband.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号