首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Advanced cloud computing technology provides cost saving and flexibility of services for users. With the explosion of multimedia data, more and more data owners would outsource their personal multimedia data on the cloud. In the meantime, some computationally expensive tasks are also undertaken by cloud servers. However, the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data. Recently, this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data. In this paper, two reversible data hiding schemes are proposed for encrypted image data in cloud computing: reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain. The former is that additional bits are extracted after decryption and the latter is that extracted before decryption. Meanwhile, a combined scheme is also designed. This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing, which not only ensures multimedia data security without relying on the trustworthiness of cloud servers, but also guarantees that reversible data hiding can be operated over encrypted images at the different stages. Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme. The computation cost of the proposed scheme is acceptable and adjusts to different security levels.  相似文献   

2.
Efficient multi-keyword fuzzy search over encrypted data is a desirable technology for data outsourcing in cloud storage. However, the current searchable encryption solutions still have deficiencies in search efficiency, accuracy and multiple data owner support. In this paper, we propose an encrypted data searching scheme that can support multiple keywords fuzzy search with order preserving (PMS). First, a new spelling correction algorithm-(Possibility-Levenshtein based Spelling Correction) is proposed to correct user input errors, so that fuzzy keywords input can be supported. Second, Paillier encryption is introduced to calculate encrypted relevance score of multiple keywords for order preserving. Then, a queue-based query method is also applied in this scheme to break the linkability between the query keywords and search results and protect the access pattern. Our proposed scheme achieves fuzzy matching without expanding the index table or sacrificing computational efficiency. The theoretical analysis and experiment results show that our scheme is secure, accurate, error-tolerant and very efficient.  相似文献   

3.
In the era of big data, outsourcing massive data to a remote cloud server is a promising approach. Outsourcing storage and computation services can reduce storage costs and computational burdens. However, public cloud storage brings about new privacy and security concerns since the cloud servers can be shared by multiple users. Privacy-preserving feature extraction techniques are an effective solution to this issue. Because the Rotation Invariant Local Binary Pattern (RILBP) has been widely used in various image processing fields, we propose a new privacy-preserving outsourcing computation of RILBP over encrypted images in this paper (called PPRILBP). To protect image content, original images are encrypted using block scrambling, pixel circular shift, and pixel diffusion when uploaded to the cloud server. It is proved that RILBP features remain unchanged before and after encryption. Moreover, the server can directly extract RILBP features from encrypted images. Analyses and experiments confirm that the proposed scheme is secure and effective, and outperforms previous secure LBP feature computing methods.  相似文献   

4.
With the rapid development of cloud computing and Internet of Things (IoT) technology, massive data raises and shuttles on the network every day. To ensure the confidentiality and utilization of these data, industries and companies users encrypt their data and store them in an outsourced party. However, simple adoption of encryption scheme makes the original lose its flexibility and utilization. To address these problems, the searchable encryption scheme is proposed. Different from traditional encrypted data search scheme, this paper focuses on providing a solution to search the data from one or more IoT device by comparing their underlying numerical values. We present a multi-client comparable search scheme over encrypted numerical data which supports range queries. This scheme is mainly designed for keeping the confidentiality and searchability of numeric data, it enables authorized clients to fetch the data from different data owners by a generated token. Furthermore, to rich the scheme’s functionality, we exploit the idea of secret sharing to realize cross-domain search which improves the data’s utilization. The proposed scheme has also been proven to be secure through a series of security games. Moreover, we conduct experiments to demonstrate that our scheme is more practical than the existed similar schemes and achieves a balance between functionality and efficiency.  相似文献   

5.
With the rapid development of cloud computing technology, cloud services have now become a new business model for information services. The cloud server provides the IT resources required by customers in a self-service manner through the network, realizing business expansion and rapid innovation. However, due to the insufficient protection of data privacy, the problem of data privacy leakage in cloud storage is threatening cloud computing. To address the problem, we propose BC-PECK, a data protection scheme based on blockchain and public key searchable encryption. Firstly, all the data is protected by the encryption algorithm. The privacy data is encrypted and stored in a cloud server, while the ciphertext index is established by a public key searchable encryption scheme and stored on the blockchain. Secondly, based on the characteristics of trusted execution of smart contract technology, a control mechanism for data accessing and sharing is given. Data transaction is automatically recorded on the blockchain, which is fairer under the premise of ensuring the privacy and security of the data sharing process. Finally, we analyzed the security and fairness of the current scheme. Through the comparison with similar schemes, we have shown the advantages of the proposed scheme.  相似文献   

6.
With the widespread use of cloud computing technology, more and more users and enterprises decide to store their data in a cloud server by outsourcing. However, these huge amounts of data may contain personal privacy, business secrets and other sensitive information of the users and enterprises. Thus, at present, how to protect, retrieve, and legally use the sensitive information while preventing illegal accesses are security challenges of data storage in the cloud environment. A new proxy re-encryption with keyword search scheme is proposed in this paper in order to solve the problem of the low retrieval efficiency of the encrypted data in the cloud server. In this scheme, the user data are divided into files, file indexes and the keyword corresponding to the files, which are respectively encrypted to store. The improved scheme does not need to re-encrypt partial file cipher-text as in traditional schemes, but re-encrypt the cipher-text of keywords corresponding to the files. Therefore the scheme can improve the computational efficiency as well as resist chosen keyword attack. And the scheme is proven to be indistinguishable under Hash Diffie-Hellman assumption. Furthermore, the scheme does not need to use any secure channels, making it more effective in the cloud environment.  相似文献   

7.
Recently, reversible data hiding in encrypted image (RDHEI) has attracted extensive attention, which can be used in secure cloud computing and privacy protection effectively. In this paper, a novel RDHEI scheme based on block classification and permutation is proposed. Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively. After block classification, content owner utilizes a specific encryption method, including stream cipher encryption and block permutation to protect image content securely. For the encrypted image, data hider embeds additional secret information in the most significant bits (MSB) of the encrypted pixels in smooth blocks and the final marked image can be obtained. At the receiver side, secret data will be extracted correctly with data-hiding key. When receiver only has encryption key, after stream cipher decryption, block scrambling decryption and MSB error prediction with threshold, decrypted image will be achieved. When data hiding key and encryption key are both obtained, receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly, hence, receiver can recover marked image losslessly. Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.  相似文献   

8.
To save the local storage, users store the data on the cloud server who offers convenient internet services. To guarantee the data privacy, users encrypt the data before uploading them into the cloud server. Since encryption can reduce the data availability, public-key encryption with keyword search (PEKS) is developed to achieve the retrieval of the encrypted data without decrypting them. However, most PEKS schemes cannot resist quantum computing attack, because the corresponding hardness assumptions are some number theory problems that can be solved efficiently under quantum computers. Besides, the traditional PEKS schemes have an inherent security issue that they cannot resist inside keywords guessing attack (KGA). In this attack, a malicious server can guess the keywords encapsulated in the search token by computing the ciphertext of keywords exhaustively and performing the test between the token and the ciphertext of keywords. In the paper, we propose a lattice-based PEKS scheme that can resist quantum computing attacks. To resist inside KGA, this scheme adopts a lattice-based signature technique into the encryption of keywords to prevent the malicious server from forging a valid ciphertext. Finally, some simulation experiments are conducted to demonstrate the performance of the proposed scheme and some comparison results are further shown with respect to other searchable schemes.  相似文献   

9.
Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptographic solution to the problem for enforcing fine-grained access control over encrypted data in the cloud. However, when applying CP-ABE to data outsourcing scenarios, we have to address the challenging issue of policy updates because access control elements, such as users, attributes, and access rules may change frequently. In this paper, we propose a notion of access policy updatable ciphertext-policy attribute-based encryption (APU-CP-ABE) by combining the idea of ciphertext-policy attribute-based key encapsulation and symmetric proxy re-encryption. When an access policy update occurs, data owner is no longer required to download any data for re-encryption from the cloud, all he needs to do is generate a re-encryption key and produce a new encapsulated symmetric key, and then upload them to the cloud. The cloud server executes re-encryption without decryption. Because the re-encrypted ciphertext is encrypted under a completely new key, users cannot decrypt data even if they keep the old symmetric keys or parts of the previous ciphertext. We present an APU-CP-ABE construction based on Syalim et al.’s [Syalim, Nishide and Sakurai (2017)] improved symmetric proxy re-encryption scheme and Agrawal et al.’s [Agrawal and Chase (2017)] attribute-based message encryption scheme. It requires only 6 bilinear pairing operations for decryption, regardless of the number of attributes involved. This makes our construction particularly attractive when decryption is time-critical.  相似文献   

10.
As the use of cloud storage for various services increases, the amount of private personal information along with data stored in the cloud storage is also increasing. To remotely use the data stored on the cloud storage, the data to be stored needs to be encrypted for this reason. Since “searchable encryption” is enable to search on the encrypted data without any decryption, it is one of convenient solutions for secure data management. A public key encryption with keyword search (for short, PEKS) is one of searchable encryptions. Abdalla et al. firstly defined IND-CCA security for PEKS to enhance it’s security and proposed consistent IND-CCA secure PEKS based on the “robust” ANO-CCA secure identity-based encryption(IBE). In this paper, we propose two generic constructions of consistent IND-CCA secure PEKS combining (1) a hierarchical identity based encryption (for short, HIBE) and a signature scheme or (2) a HIBE, an encapsulation, and a message authentication code (for short, MAC) scheme. Our generic constructions identify that HIBE requires the security of a signature or a MAC as well as the weaker “ANO-CPA security (resp., IND-CPA security)” of HIBE than “ANO-CCA security (resp., IND-CCA security)” of IBE required in for achieving IND-CCA secure (resp., consistent) PEKS. Finally, we prove that our generic constructions satisfy IND-CCA security and consistency under the security models.  相似文献   

11.
Content based image retrieval (CBIR) techniques have been widely deployed in many applications for seeking the abundant information existed in images. Due to large amounts of storage and computational requirements of CBIR, outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices. However, owing to the private content contained in images, directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem, so the images should be protected carefully before outsourcing. This paper presents a secure retrieval scheme for the encrypted images in the YUV color space. With this scheme, the discrete cosine transform (DCT) is performed on the Y component. The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling. Then the image owner transmits the encrypted images to the cloud server. When receiving a query trapdoor form on query user, the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components. The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms. Finally, the encrypted images closest to the query image are returned to the query user.  相似文献   

12.
With the continuous development of cloud computing and big data technology, the use of cloud storage is more and more extensive, and a large amount of data is outsourced for public cloud servers, and the security problems that follow are gradually emerging. It can not only protect the data privacy of users, but also realize efficient retrieval and use of data, which is an urgent problem for cloud storage. Based on the existing fuzzy search and encrypted data fuzzy search schemes, this paper uses the characteristics of fuzzy sounds and polysemy that are unique to Chinese, and realizes the synonym construction of keywords through Chinese Pinyin and Chinese-English translation, and establishes the fuzzy word and synonym set of keywords. This paper proposes a Chinese multi-keyword fuzzy search scheme in a cloud environment, which realizes the fuzzy search of multiple Chinese keywords and protects the private key by using a pseudo-random function. Finally, the safety analysis and system experiments verify that the scheme has high security, good practicability, and high search success rate.  相似文献   

13.
In this article, we proposed a selective partial image encryption scheme of Secure JPEG2000 (JPSEC) for digital cinema or any other JPEG2000‐based applications. It makes a scalable encryption scheme possible on the basis of a trade‐off relationship between the encryption effect and the encryption cost. The encryption scheme was designed to activate during the image compression process, which is between quantization and entropy coding. Three data selection schemes were involved to select the parts of data to be encrypted: subband selection, data bit selection, and random selection of coefficients. The experimental results with over 3000 test images revealed that the PSNRs were between about 9.5 to 7.5 dB when the portion of the encrypted data by this scheme was between 1/4096 and 1/256. As the encryption effect is reasonably high with very low cost, the proposed scheme has high potential to provide secure communications in a variety of wired/wireless scenarios. © 2010 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 20, 277‐284, 2010  相似文献   

14.
The vehicular cloud computing is an emerging technology that changes vehicle communication and underlying traffic management applications. However, cloud computing has disadvantages such as high delay, low privacy and high communication cost, which can not meet the needs of real-time interactive information of Internet of vehicles. Ensuring security and privacy in Internet of Vehicles is also regarded as one of its most important challenges. Therefore, in order to ensure the user information security and improve the real-time of vehicle information interaction, this paper proposes an anonymous authentication scheme based on edge computing. In this scheme, the concept of edge computing is introduced into the Internet of vehicles, which makes full use of the redundant computing power and storage capacity of idle edge equipment. The edge vehicle nodes are determined by simple algorithm of defining distance and resources, and the improved RSA encryption algorithm is used to encrypt the user information. The improved RSA algorithm encrypts the user information by reencrypting the encryption parameters . Compared with the traditional RSA algorithm, it can resist more attacks, so it is used to ensure the security of user information. It can not only protect the privacy of vehicles, but also avoid anonymous abuse. Simulation results show that the proposed scheme has lower computational complexity and communication overhead than the traditional anonymous scheme.  相似文献   

15.
With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access, more and more users store data in cloud server. However, how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval. Towards this goal, this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing. Firstly, we extract local feature of images, and then cluster the features by K-means. Based on it, the visual word codebook is introduced to represent feature information of images, which hashes the codebook to the corresponding fingerprint. Finally, the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval. Extensive experiments on two public datasets validate the effectiveness of our method. Besides, the proposed method outperforms one popular searchable encryption, and the results are competitive to the state-of-the-art.  相似文献   

16.
云计算因其经济、便利、高可扩展性等诸多优势已成为当今信息技术领域的热门话题,受到研究者的广泛关注和重视。安全性是限制云计算发展的重要因素,由于云存储在海洋云计算中占有重要地位,海洋环境信息的云存储系统中的安全问题成为海洋云计算研究的重要问题之一。本文在结合海洋环境信息的特点下研究保序加密在海洋环境信息云存储检索系统的应用,为海洋环境信息的云存储密文检索提供了一种可行方法。  相似文献   

17.
Reversible data hiding in encrypted images (RDH-EI) technology is widely used in cloud storage for image privacy protection. In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images, we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling. First, the prediction error image is obtained by a novel prediction method before encryption. Then, the image pixel values are divided into two categories by the threshold range, which is selected adaptively according to the image content. Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged. The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm. Moreover, the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position. Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-ofthe-art methods for images with different texture complexity.  相似文献   

18.
Currently, many biometric systems maintain the user’s biometrics and templates in plaintext format, which brings great privacy risk to uses’ biometric information. Biometrics are unique and almost unchangeable, which means it is a great concern for users on whether their biometric information would be leaked. To address this issue, this paper proposes a confidential comparison algorithm for iris feature vectors with masks, and develops a privacy-preserving iris verification scheme based on the El Gamal encryption scheme. In our scheme, the multiplicative homomorphism of encrypted features is used to compare of iris features and their mask information. Also, this paper improves the Hamming distance of iris features, which makes the similarity matching work better than existing ones. Experimental results confirm the practicality of our proposed schemes in real world applications, that is, for the iris feature vectors and masks of 2048 bits, nearly 12 comparisons can be performed per second.  相似文献   

19.
Many organizations apply cloud computing to store and effectively process data for various applications. The user uploads the data in the cloud has less security due to the unreliable verification process of data integrity. In this research, an enhanced Merkle hash tree method of effective authentication model is proposed in the multi-owner cloud to increase the security of the cloud data. Merkle Hash tree applies the leaf nodes with a hash tag and the non-leaf node contains the table of hash information of child to encrypt the large data. Merkle Hash tree provides the efficient mapping of data and easily identifies the changes made in the data due to proper structure. The developed model supports privacy-preserving public auditing to provide a secure cloud storage system. The data owners upload the data in the cloud and edit the data using the private key. An enhanced Merkle hash tree method stores the data in the cloud server and splits it into batches. The data files requested by the data owner are audit by a third-party auditor and the multi-owner authentication method is applied during the modification process to authenticate the user. The result shows that the proposed method reduces the encryption and decryption time for cloud data storage by 2–167 ms when compared to the existing Advanced Encryption Standard and Blowfish.  相似文献   

20.
Cloud computing offers internet location-based affordable, scalable, and independent services. Cloud computing is a promising and a cost-effective approach that supports big data analytics and advanced applications in the event of forced business continuity events, for instance, pandemic situations. To handle massive information, clusters of servers are required to assist the equipment which enables streamlining the widespread quantity of data, with elevated velocity and modified configurations. Data deduplication model enables cloud users to efficiently manage their cloud storage space by getting rid of redundant data stored in the server. Data deduplication also saves network bandwidth. In this paper, a new cloud-based big data security technique utilizing dual encryption is proposed. The clustering model is utilized to analyze the Deduplication process hash function. Multi kernel Fuzzy C means (MKFCM) was used which helps cluster the data stored in cloud, on the basis of confidence data encryption procedure. The confidence finest data is implemented in homomorphic encryption data wherein the Optimal SIMON Cipher (OSC) technique is used. This security process involving dual encryption with the optimization model develops the productivity mechanism. In this paper, the excellence of the technique was confirmed by comparing the proposed technique with other encryption and clustering techniques. The results proved that the proposed technique achieved maximum accuracy and minimum encryption time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号