首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
赵立新  孟国营  郑立允 《功能材料》2013,(18):2715-2718,2723
通过机械化学合成方法制备了矫顽力分别为2.95×106、2.83×106和8.60×105 A/m的分散的单晶纳米Sm2Co7、SmCo5和Sm2Co17硬磁颗粒。研究了球磨时间、原料配比和退火工艺等对所制备的纳米永磁颗粒的微观组织、结构和磁性能的影响。结果表明,机械化学球磨时间至少是4h或更长时间才能获得Sm-Co硬磁合金粉末。原料经过高能球磨后、未退火时,由于大部分颗粒为非晶结构,矫顽力较低,随着退火温度的上升,矫顽力增大,当退火温度为600℃时,达到最大值为2.83×106 A/m,然后,随着退火温度的进一步升高,矫顽力减小。Sm-Co纳米颗粒的粒径随着退火温度的降低而明显减小。  相似文献   

2.
用电弧熔炼法制备Sm2(FexCo1-x)17(x=0,0.3和0.7)母合金锭,均匀化退火后采用球磨方法制备纳米晶合金粉末。研究了Fe掺杂及球磨处理对Sm2(FexCo1-x)17合金结构、居里温度及永磁性能的影响。实验结果表明,随着Fe含量增多,合金中1∶5相逐渐减少,当x=0.7时,形成单相2∶17型化合物,同时居里温度从938℃(x=0)下降到590℃(x=0.7)。球磨处理过程有利于形成单相2∶17纳米合金粉,饱和磁化强度随着球磨时间的增加逐渐增大,同时内禀矫顽力和磁能积与球磨时间的关系呈两头下降的趋势。球磨时间在0.5~1 h时,纳米合金粉末的永磁磁性能达到最佳,Sm2Co17的最佳磁性能为4πMs=0.65 T,iHc=246.8 k A/m,(BH)max=25.5 k J/m3。  相似文献   

3.
制备了两种2∶17R型Sm-Co合金:Sm2(Fe,Cu,Zr,Co)17和纯二元Sm2Co17,并利用高能球磨和放电等离子烧结(SPS)制备了致密的纳米晶块体合金,研究了其磁性能和相结构的变化。Sm2(Fe,Cu,Zr,Co)17具有较高的矫顽力,而纯二元Sm2Co17矫顽力基本为零。但高能球磨可快速降低Sm2(Fe,Cu,Zr,Co)17合金的矫顽力。利用放电等离子烧结非晶粉末制备了纳米晶块体合金,纯二元Sm2Co17合金具有较高的矫顽力,并且具有1∶7H相结构。而Sm2(Fe,Cu,Zr,Co)17合金则因为Fe-Co相及Sm2O3相的析出,具有较高的饱和磁化强度和极低的矫顽力。  相似文献   

4.
用电弧熔炼法制备Sm Fe10Mo2及Sm Fe10Mo1.5B0.5母合金锭,将其均匀化退火后用球磨法制备Sm Fe10Mo1.5B0.5纳米晶合金粉末,研究了B掺杂对Sm Fe10Mo2块体合金和球磨对Sm Fe10Mo1.5B0.5纳米粉末的相结构和磁性的影响。结果表明,B掺杂后合金的Th Mn12相结构不变,居里温度由270℃提高到334℃;合金成分不均匀导致热磁曲线出现两个相变点。Sm Fe10Mo1.5B0.5合金经球磨处理0.5 h后Mo大量析出,1∶12相明显减少;随着球磨时间的增加α-Fe析出并形成非磁性的Mo2Fe B2相,使内禀矫顽力明显减小,且其饱和磁化强度随着球磨时间的增加呈现先增大后减小的趋势。球磨0.5 h的纳米合金粉末永磁磁性能最佳:Ms=55Am2/kg,iHc=0.2T。  相似文献   

5.
采用高能球磨和放电等离子烧结技术制备了致密纳米晶Sm2Co17烧结磁体,研究了粉末和烧结磁体的结构和磁性能.球磨粉末在低温退火(<1023K)时,主相为TbCu7结构;高温退火(>1023K)时,主相为Th2Zn17结构.退火温度从923K增加到1223K,粉末的矫顽力从0.99T下降到0.12T.烧结磁体也具有TbCu7结构,磁体平均晶粒尺寸约为35nm.室温时磁体的剩磁为0.65T,矫顽力达0.87T.烧结磁体具有较好的高温性能,573K时的剩磁为0.6T,矫顽力为0.32T.  相似文献   

6.
采用直流磁控溅射法制备SmCo薄膜,研究了退火温度对薄膜微结构及磁性能的影响。XRD分析结果表明,当退火温度为600℃时,SmCo5相析出,而Sm2Co17相在700℃析出。SEM照片可看出,退火温度高于900℃时,六方柱状的SmCo5相和菱方状的Sm2Co17相全部析出。随着退火温度的升高,晶粒尺寸增大,当温度达940℃时,晶粒尺寸减小,而在980℃时,晶粒尺寸又将增大。VSM测试表明,与制备态的薄膜相比,退火后的薄膜在垂直于膜面方向的矫顽力、剩余磁化强度及最大磁能积都增大。960℃时得到矫顽力和剩余磁化强度的最大值,800℃时得到最大磁能积的最大值。  相似文献   

7.
在室温下,用对靶磁控溅射法制备了系列类三明治结构C/Co/C颗粒膜.C靶和Co靶分别采用射频溅射和直流对靶溅射模式,并且随后进行了原位退火.用振动样品磁强计(VSM)和扫描探针显微镜(SPM)系统研究了C/Co/C颗粒膜的微结构和磁特性与磁性层厚度、非磁性层厚度、退火温度的关系.X射线衍射(XRD)图样显示出退火400℃的样品具有很好的六角密堆积结构.扫描探针显微镜图样和δM曲线说明Co纳米颗粒嵌在非晶质的C母基内.振动样品磁强计测量表明磁矩很好的排列在膜面内,随着磁性层Co层厚度的增加,矫顽力(Hc)先增大然后减小.在Co层厚度为20nm,C层厚度为30nm,退火温度400℃时,矫顽力达到最大值,剩磁比(S)接近于1.  相似文献   

8.
在以甘氨酸为络合剂的水溶液中,利用恒电位技术成功制备出了高Sm含量(质量分数为62.2%)的Sm-Co合金薄膜。循环伏安曲线表明,甘氨酸在电化学沉积Sm-Co合金薄膜的过程中具有重要作用。络合物[CoⅡ-SmⅢ(Gly-)2(HGly±)]3+的形成有利于Sm和Co在相对低电位下的共沉积。X射线衍射仪(XRD)分析结果表明,镀态合金膜为非晶态,经过退火处理后,合金膜由非晶态转化为多晶态结构,出现了永磁相Sm2Co17,合金膜的矫顽力明显增大。  相似文献   

9.
HDDR处理的Sm2Fe16Ti1Nx化合物高能球磨的研究   总被引:2,自引:0,他引:2  
在用HDDR法制备Sm2Fe16Ti1Nx氮化物过程中,研究了高能球磨对氮化物粉末的形貌、物相结构及磁性能的影响.发现高能球磨Sm2Fe16Ti1Nx氮化物使粉末颗粒细化的过程可描述为大粉末颗粒→压延成层片状→断裂成短棒状及球形颗粒→压延成层片状→断裂成球形小颗粒,并在球磨一定时间后使粉末中的Sm2(FeTi)17Nx主相完全非晶化,α-Fe含量增高且没有非晶化.球磨后粉末的矫顽力随着球磨时间的延长而降低,而剩磁在球磨短时间时降低,再延长球磨时间又增高,在球磨较长时间到Sm2(FeTi)17Nx主相完全非晶化后又使剩磁降低,最高磁场下的磁化强度值则随着球磨时间的延长而增加.手研磨后粉末的矫顽力随研磨时间的延长而逐渐升高而剩磁及最高场下磁化强度值变化不大.  相似文献   

10.
C/Co/C纳米颗粒膜的制备及特性   总被引:1,自引:0,他引:1  
应用对靶磁控溅射法在玻璃基底上制备了类三明治结构C/Co/C纳米颗粒膜,并进行了原位退火.发现磁性层厚度对C/Co/C颗粒膜的微结构和磁特性有明显影响.在400℃退火的样品具有很好的六角密堆积结构,磁矩很好的排列在膜面内.随着磁性层Co层厚度的增加,矫顽力Hc先增大然后减小,粒径和磁畴簇略微增大,样品的表面粗糙度Ra也减小到了0.5 nm左右.  相似文献   

11.
结合共沉淀法和氢气还原法成功制备出FeNi/NiFe2O4纳米复合颗粒,所制备的纳米复合颗粒包含NiFe2O4和Fe-Ni合金,其中Fe-Ni合金具有体心立方和面心立方两种结构。用XRD和TEM对所得样品进行结构分析。用SQUID测量样品在室温时的磁滞回线,发现Fe-Ni/NiFe2O4纳米复合颗粒的矫顽力和饱和磁化强度与制备态NiFe2O4纳米颗粒相比随着退火时间的增加呈现出逐渐增加的趋势。为了进一步研究所制备的纳米复合颗粒的磁性特征,测量退火时间相同而退火温度不同的两个样品在零磁场冷却(ZFC)和带磁场冷却(FC)条件下的M-T曲线。  相似文献   

12.
机械合金化制备Nd60 Fe20 Al10 Co10非晶粉末的研究   总被引:1,自引:0,他引:1  
鲁小川  徐晖  阳松平  董远达 《功能材料》2003,34(6):647-648,651
利用机械合金化制备Nd60Fe20Al10Co10非晶粉末,采用X射线衍射(XRD)和振动样品磁强计(VSM)研究Nd60Fe20Al10Co10非晶的形成过程、磁性能变化及其与成分结构的关系。结果表明,90min后Al原子溶入Nd原子形成固溶体。球磨2h后出现少量非晶,20h后Co单质和Nd单质消失.组织为非晶相(含少量的α-Fe)。球磨100h最终得到非晶 少量的α-Fe纳米晶。球磨过程中,矫顽力随着合金中非晶的量增加而升高.球磨20h矫顽力达到43kA/m。Nd60Fe20Al10Co10合金具有硬磁性是由于非晶相的存在而造成的。  相似文献   

13.
纳米晶SmCo5粉体具有高矫顽力和强磁耦合的优点,是制备纳米复合永磁材料使用最广泛的硬磁材料之一。采用表面活性剂辅助球磨法制备SmCo5微纳米片,采用行星式球磨机,系统研究了球磨时间、球料比和表面活性剂含量对SmCo5粉体的形貌和磁性能的影响。结果表明随着球磨时间和球料比的增加,SmCo5粉末的粒径和厚度减小并转化为微、纳米片,当球磨时间和球料比大于4 h和12∶1后,SmCo5粉末的粒径和厚度变化不明显。选用球料比16∶1、球磨时间2 h、表面活性剂含量30%参数,SmCo5粉体具有最优的磁性能,剩磁(Mr)为45.9 Am2/kg,矫顽力(Hc)为1.13×106 A/m。  相似文献   

14.
利用电化学沉积的方法制备了具有fcc结构的Co0.36Cu0.64合金纳米线阵列,并对样品在400-700℃进行了退火处理.X-射线衍射及磁测量结果显示,随着退火温度的升高CoCu合金出现相分离,伴随着相分离矫顽力显著增大.综合分析得到矫顽力的增加是由于纳米线中Co和cu的相分离使得一些Co的单畴颗粒分散在Cu之间造成的.  相似文献   

15.
使用小孔径阳极氧化铝模板制备Fe0.3Co0.7纳米线有序阵列,研究了热处理对其磁性的影响.结果表明,热处理对Fe0.3Co0.7纳米线有序阵列的结晶度和局部形状各向异性有重大的影响,导致纳米阵列的矫顽力和剩磁比发生相应的变化.在适当热处理条件下获得的Fe0.3Co0.7纳米线有序阵列具有较高的矫顽力和剩磁比.在H2保护下550℃处理时获得最高的矫顽力2.63×105 A/m,矫顽力随着热处理时间的增加先是快速增加,然后趋向平缓,最后有一定程度的下降.  相似文献   

16.
采用单辊快淬法制备了Fe77Co2Zr9B10Cu2合金,在530~750℃等温退火40 min,利用X射线衍射和振动样品磁强计研究了Fe77 Co2 Zr9 B10 Cu2合金的微观结构和磁性能。结果表明:淬态Fe77Co2Zr9B10Cu2合金为非晶、纳米晶双相结构。随着退火温度的升高,α-Fe晶体相从非晶、基体中析出,晶粒尺寸长大,晶化体积分数增加,矫顽力先减小后增大,比饱和磁化强度逐渐增大。实验结果表明,530℃退火后合金的矫顽力最小,在670℃时迅速增大。样品的磁性与其微观结构、晶粒尺寸、晶化体积分数等因素有关.  相似文献   

17.
用磁控溅射方法制备了Co含量介于13.0%~24.6%(原子分数)的Co-C纳米复合薄膜,在真空下对薄膜进行退火处理。测试了样品在5、77和300K下的磁化曲线,详细研究了退火及成分对薄膜微结构和磁性能的影响。结果表明未经退火的样品磁性较弱,退火之后样品磁性能增强,低Co含量的薄膜经退火后呈现出低温铁磁性、室温超顺磁性的颗粒薄膜特征。随着Co含量增加,薄膜的磁化强度和矫顽力均明显增大,冻结温度也随之升高。  相似文献   

18.
为了制备具有优良性能的Nd-Fe-B颗粒,在等时变温退火和等温变时退火的基础上,深入研究了温度和时间对Nd-Fe-B氧化物物相组成和百分含量变化的影响,然后对物相进行调控。最终确定了合理的退火温度和退火时间,成功制备出了以Nd_2Fe_(14)B为主相的Nd-Fe-B纳米颗粒。通过XRD、Rietveld精修拟合、SEM、TEM、VSM检测分析,结果显示Nd-Fe-B氧化物主要由FeNdO_3,NdBO_3和α-Fe组成,最佳的退火温度为750℃,最佳的退火时间为5 h,最终获得的Nd-Fe-B氧化物分别为54.619%的FeNdO_3,19.901%的α-Fe,11.760%的NdBO_3。利用该氧化物成功制备出含有88.457%的Nd_2Fe_(14)B和11.543%的Fe_3B纳米粒子的Nd-Fe-B颗粒,该颗粒的矫顽力约206.96 kA/m。  相似文献   

19.
采用多元醇法制备ZnFe_2O_4纳米颗粒,研究回流时间、升温速率和回流温度对产物尺寸、形貌和磁性能的影响。通过X射线衍射仪(XRD),透射电子显微镜(TEM),傅里叶红外光谱和振动样品磁强计对样品的结构、形貌和磁性能进行表征。结果表明:制备的ZnFe_2O_4纳米颗粒分散性较好,尺寸较均一。随着回流时间的延长和回流温度的升高,ZnFe_2O_4颗粒粒径增大。回流温度为270℃时,制备的ZnFe_2O_4饱和磁化强度为35.09A·m~2/kg,剩磁较小,矫顽力为4.2kA/m,表现出亚铁磁性。  相似文献   

20.
热处理温度对纳米Mn-Zn铁氧体微粒的Ms、Hc的影响   总被引:1,自引:0,他引:1  
吴卫和  王德平  姚爱华  黄文旵  周萘 《功能材料》2006,37(10):1551-1553,1560
采用柠檬酸盐自燃烧法制备纳米锰锌(Mn-Zn)铁氧体微粒,研究后续热处理温度对产物的饱和磁化强度(Ms)、矫顽力(Hc)的影响.结果表明,纳米Mn-Zn铁氧体微粒的Ms、Hc随着热处理温度的升高,变化趋势都是先增大后减小.Ms在热处理温度为450℃时,达到最大值(46.8Am2/g);Hc在热处理温度为400℃时,达到最大值(2.7×105A/m) .纳米Mn-Zn铁氧体微粒的单畴临界尺寸大约为58nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号