首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two similar membrane bioreactors of 2 m3 each were operated in parallel over two years under the same operational conditions, fed with the same municipal wastewater. The only process and operational difference between both pilot plants was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite parallel operation, the two MBRs exhibited different fouling rates and decreases in permeability. These differences could not be accounted for by MLSS concentrations, loading rates, or filtration flux. In a one-year investigation, soluble and colloidal organic material in the activated sludge of both MBR was regularly analysed by spectrophotometric and Size Exclusion Chromatography (SEC) methods. The larger organic molecules present in the sludge water phase (i.e. polysaccharides, proteins and organic colloids) originating from microbial activity (extracellular polymeric substances) were found to impact on the fouling and to explain the difference in membrane performance between the two MBR units. In both pilot plants, a linear relationship could be clearly demonstrated between the fouling rate of the membrane and the concentration of polysaccharides in the sludge water phase during a 5 month operational period at an SRT of 8 days.  相似文献   

2.
This paper deals with the performance of hybrid membrane bioreactor (MBR) combining the precoagulation/sedimentation and membrane bioreactor. The hybrid MBR not only produces the treated water with excellent permeate quality but also shows much lower membrane fouling than the conventional MBR. It may come from its extremely low F/M ratio to maintain the low viscosity even in the high MLSS concentration range of about 20,000 mg/L. Some results of microbial community analysis in MBRs was conducted to demonstrate the other reason for its lower membrane fouling. Hybrid MBR has a high potential to be used for the recycling use of the municipal wastewater. Coagulated sludge produced in the hybrid MBR is a promising phosphorus resource. This paper also contains a recent progress of phosphorus recovery technology, which uses a new phosphoric acids absorbent, i.e. the hexagonal mesostructured zirconium sulfate (ZS). The ZS has the extremely high adsorption capacity of phosphoric acids through anion exchange. The adsorbed phosphoric acids are released from the ZS in a high pH range of about 13.  相似文献   

3.
Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.  相似文献   

4.
One of the most limiting factors for the extension and acceptance of MBR filtration systems for municipal and industrial wastewater is the impact of membrane fouling on maintenance, operation and cleaning efforts. One field of action in the European Research Project "AMEDEUS" is the development and testing of MBR module concepts with innovative fouling-prevention technology from three European module manufacturers.This article deals with the performances of the flat-sheet modules by A3 Water Solutions GmbH in double-deck configuration evaluated over 10 months in Anjou Recherche under typical biological operation conditions for MBR systems (MLSS = 10 g/l; SRT = 25 days). By using a double-deck configuration, it is possible to operate with a net flux of 25.5 l/m2.h at 20 degrees C, a membrane air flow rate of 0.21 Nm3/h.m2 of membrane to achieve a stable permeability of around 500-600 l/m2.h.bar. Additionally, it was observed that it is possible to recover the membrane performance after biofouling during operation without intensive cleaning and to maintain stable permeability during peak flows.The evaluated concepts for equipping and operating MBR systems will be applied to several full-scale plants constructed by A3 Water Solutions GmbH.  相似文献   

5.
Design considerations for wastewater treatment by reverse osmosis.   总被引:2,自引:0,他引:2  
Reverse Osmosis is finding increasing use for the treatment of municipal and industrial wastewaters due to the growing demand for high quality water in large urban areas. The growing success of membranes in this application is related to improved process designs and improved membrane products. Key factors which have been determined to result in successful operation of large-scale plants will be discussed. Factors which play a key role in the use of RO membranes include ultra or microfiltration pretreatment, low fouling membranes, flux rate, recovery and control of fouling and scaling. In particular, high flux rates can be used when UF or MF pretreatment is used. These technologies remove most of the suspended particles that would normally cause heavy fouling of lead elements. Typically, fluxes in the range of 17-21 lmh lead to cleaning frequencies in the range of 3-4 months. By combining the use of membrane pretreatment and chloramination of the feed water through chlorine addition, two of the primary sources of RO membrane fouling can be controlled. The use of chloramine has become a proven means to control biofouling in a membrane for wastewater applications. The other significant problems for RO membranes result from organics fouling by dissolved organics and scaling due to saturation of marginally soluble salts. The former can be a significant problem for membranes, due to the strong attraction forces. To some extent, these can be mitigated by making the membrane surface more hydrophilic or changing the charge of the membrane surface. To minimize fouling, many plants are turning to low fouling membranes. Extensive studies have demonstrated that the membrane surface is hydrophilic, neutrally charged over a broad pH range, and more resistant to organic adsorption. Also, an analysis of the potential scaling issues will be reviewed. In particular, calcium phosphate has been found to be one of the key scalants that will limit RO system recovery rate. Calcium phosphate concentrations can reach high values in many wastewaters, and scaling of this compound is not often modeled in most RO projection software. Various process options will be presented to evaluate the most economic means of avoiding phosphate scaling. Finally, data from major RO wastewater treatment plants will be presented to show how the RO membranes operate under actual conditions, utilizing many of these design features. Long-term data from the 2.6 mgd Bedok demonstration Plant demonstrate that the RO membranes operate consistently on wastewater. Experiences from the 8.5 mgd (32,000 m3/day) Bedok and 10.5 mgd (40,000 m3/day) Kranji plants will also be presented. These large plants started operation in the fall of 2002 and have demonstrated an effective means to reclaim high quality water from difficult source waters, such as municipal wastewaters.  相似文献   

6.
Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment for effective solids-liquid separation. However, a common problem encountered with MBR systems is fouling of the membrane resulting in frequent membrane cleaning and replacement which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the shear stress in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results were obtained with the CFD model (<9% error), it was extrapolated to include the non-Newtonian behaviour of activated sludge.  相似文献   

7.
The objective of this study is to investigate solids concentration and extracellular polymeric substance (EPS) effects on the membrane fouling in the submerged membrane bioreactor. The relationship between the solids retention time (SRT) and the amount of EPS is observed in three lab-scale MBRs. Additionally, the EPS effect on membrane fouling is quantified by calculating the specific cake resistance (alpha) using an unstirred batch cell test. By observing the sludge over a long period under various SRT scenarios, a wide range of EPS and membrane fouling data is obtained. These observations provide sufficient evidence of the functional relationship between SRT, EPS and alpha. As SRT decreases, the amount of EPS bound in sludge floc becomes higher in the high MLSS condition (> 5,000 mg/L). The amount of EPS in the sludge floc has positive influence on alpha. A sigmoid trend between EPS and alpha is observed and the functional relationship obtained by dimensional analysis is consistent with the experimental results.  相似文献   

8.
This paper presents the results of the long-term operation and monitoring of membrane fouling at several full-scale MF/RO water recycling facilities operated by Agbar in Spain. It was demonstrated that membranes give very reliable treatment enabling the production of high-grade recycled water, well disinfected and with the removal of all priority substances. The high organic and salt concentrations of raw wastewater combined to extremely high variations justified the implementation of sand filtration to protect MF/RO membranes. Membrane autopsy was used to better understand the predominant fouling mechanisms and optimise down-stream operation and membrane cleaning strategy. The main membrane pathologies are described with recommendation of an adequate cleaning strategy.  相似文献   

9.
A submerged flat metal MBR (membrane bioreactor) was used to treat synthetic domestic sewage in this study. The experiment was continued for 270 days and ran under two modes as AMBR (aerobic membrane bioreactor) and A/O-MBR (anoxic/aerobic membrane bioreactor) at a permeate flux of 0.4-1 m3/(m2 d). PVA (polyvinyl alcohol) gel beads were added to the aeration tank with a volume ratio of 10% at the end of the A/O-MBR mode. The mean COD and TN removal efficiencies achieved 96.69 and 32.12% under the AMBR mode, and those were 92.17 and 72.44% under the A/O-MBR mode, respectively. SND (simultaneous nitrification and denitrification) occurred at high MLSS (mixed liquor suspended solids) concentration. The metal membranes reduced effluent COD during filtration. The system ran stably for 115 days at a permeate flux of 0.8-1 m3/(m2 d) without changing membranes under the AMBR mode, but the membrane filterability decreased gradually under high MLSS or A/O-MBR mode, and the addition of PVA worsened the membrane filterability on the contrary. PSD (particle size distribution) and sludge fractions had evident influence on membrane fouling. The main fouling mechanism was cake formation under the AMBR mode, and that was pore blocking under the A/O-MBR mode.  相似文献   

10.
The paper discusses the experimental optimisation of both chemical and mechanical cleaning procedures for a flat-sheet submerged membrane bioreactor fed with municipal wastewater. Fouling was evaluated by means of the critical flux concept, which was experimentally measured by short-term flux-stepping tests. By keeping constant most important parameters of the biological process (MLSS, sludge age), two different chemical cleaning protocols (2,000 mg L(-1) NaOCl and 200 mg L(-1) NaOCl) were applied with different frequency and, after approximately 9 months of operation, the criticality threshold was determined under different values of SAD(m) (specific aeration demand per unit of membrane surface area). The weaker and more frequent chemical cleaning regime (200 mg L(-1), monthly) proved much more effective than the stronger and less frequent strategy (2,000 mg L(-1), once every three months). The improvement of performances was quantified by two TMP-based parameters, the fouling rate and the DeltaTMP (difference between TMP values during the increasing and decreasing phase of hysteresis). The best performing configuration was then checked over a longer period by running four long-term trials showing an exponential trend of the sub-critical fouling rate with the imposed flux.  相似文献   

11.
Sludge properties have a strong impact on the operational aspects of membrane bioreactors (MBRs). Poor sludge properties cause stronger membrane fouling and reduce the filtration performance of MBRs. Up to now there is no general method used to measure the fouling or filtration relevant sludge properties in MBRs. The aim of this work was to develop a simple but reliable method to supply operators a tool to monitor the important sludge properties for their application and to compare this method with existing techniques. Through extensive research a new method called the sludge filtration index (SFI) has been developed to indicate the appropriate sludge parameters for MBR systems in a cheap and easy manner. The SFI can be measured with simple laboratory equipment and offers operators a powerful tool to monitor the conditions of their sludge, independent of the membrane conditions.  相似文献   

12.
A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.  相似文献   

13.
A Submerged Membrane Anaerobic Reactor (SMAR) is being developed for the treatment of waste water originating in Sasol's coal to fuel synthesis process. The laboratory-scale SMAR uses A4-size submerged flat panel ultrafiltration membranes to induce a 100% solids-liquid separation. Biogas gets extracted from the headspace above the anaerobic mixed liquor and reintroduced through a coarse bubble diffuser below the membranes. This induces a gas scour on the membranes that avoids biomass immobilization and membrane fouling. The substrate is a high strength (18 gCOD/l) petrochemical effluent consisting mostly of C2 to C6 short chain fatty acids with a low pH. Because of this, the pH of the reactor has to be controlled to a pH of 7.1. Organic Loading Rates of up to 25 kgCOD/m3 reactor volume/d has been observed with effluent COD normally <500 mgCOD/l and FSA <50 mgN/l with no particulates >0.45 microm at hydraulic retention times of 17 hours. 98% of the COD is converted to methane and the remainder to biomass. Mixed Liquor (MLSS) concentrations >30 gTSS/l can be maintained without deterioration of membrane fluxes, even though the Diluted Sludge Volume Index (DSVI) indicates that the sludge cannot be settled. No noteworthy deterioration in membrane performance has been observed over the 320 day operational period.  相似文献   

14.
Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.  相似文献   

15.
Dyeing wastewater was post-treated by using nanofiltration (NF) and reverse osmosis (RO) membranes. To reduce membrane fouling, poly (vinyl alcohol) (PVA) with a neutral charge was coated on NF and RO membranes. The effect of surface charge and surface roughness on membrane fouling was investigated. Dyeing wastewater was pre-treated by using coagulation, activated sludge process, and MF process to investigate the effect of the pre-treatment on the membrane fouling. It is demonstrated that the extent of fouling is significantly influenced by the surface roughness and the surface charge on the NF and RO membranes. A membrane with a smooth and neutral surface was fouled less. The pre-treatment was essential for avoiding NF and RO membranes fouling. The quality of the final permeate was acceptable for water reuse.  相似文献   

16.
Discharge waters from activated sludge processes in the pulp and paper industry and from a municipal wastewater treatment plant were filtered with various nanofiltration (NF) and low pressure reverse osmosis (RO) membranes. The purpose was to study flux, retention, and permeate quality after membrane filtration by using a high shear (CR-250/2) filter. The suitability of the achieved permeates for reuse at the industrial site is also discussed. The NF permeate was practically free from colour and organic compounds but contained significant amount of inorganic compounds e.g. chloride ions, especially when a high amount of sulphate containing discharge waters were filtered, in which case a low pressure RO membrane was needed to successfully remove monovalent anions. Organic compounds were almost completely retained by NF and RO membranes and organic carbon in the permeate was less than 10 mg/dm3 on average. The achieved permeate can easily be reused in paper production. Nanofiltration has a significantly higher flux and also a lower fouling tendency than reverse osmosis but it passes through monovalent ions when there is a high sulphate concentration in the water. Therefore, RO might be needed in such cases to produce excellent process water.  相似文献   

17.
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.  相似文献   

18.
A pilot scale membrane plant was constructed and monitored in Shah Alam, Malaysia for municipal wastewater reclamation for industrial application purposes. The aim of this study was to verify its suitability under the local conditions and environmental constraints for secondary wastewater reclamation. Immersed-type crossflow microfiltration (IMF) was selected as the pretreatment step before reverse osmosis filtration. Secondary wastewater after chlorine contact tank was selected as feed water. The results indicated that the membrane system is capable of producing a filtrate meeting the requirements of both WHO drinking water standards and Malaysian Effluent Standard A. With the application of an automatic backwash process, IMF performed well in hydraulic performance with low fouling rate being achieved. The investigations showed also that chemical cleaning is still needed because of some irreversible fouling by microorganisms always remains. RO treatment with IMF pretreatment process was significantly applicable for wastewater reuse purposes and promised good hydraulic performance.  相似文献   

19.
A single-fibre microfiltration system was employed to investigate the importance of various operating and sludge property parameters to the membrane fouling during sludge filtration. The sludge was obtained from a submerged membrane bioreactor (SMBR). A series of comparative and correlative filtration and fouling tests were conducted on the influence of the operating variables, sludge properties and the liquid-phase organic substances on the membrane fouling development. The test results were analysed statistically with Pearson's correlation coefficients and the stepwise multivariable linear regression. According to the statistical evaluation, the membrane fouling rate has a positive correlation with the biopolymer cluster (BPC) concentration, sludge concentration (mixed liquor suspended solids, MLSS), filtration flux and viscosity, a negative correlation with the cross-flow velocity, and a weak correlation with the extracellular polymeric substances and soluble microbial products. BPC appear to be the most important factor to membrane fouling development during the sludge filtration, followed by the filtration flux and MLSS concentration. The cross-flow rate also is important to the fouling control. It is argued that, during membrane filtration of SMBR sludge, BPC interact with sludge flocs at the membrane surface to facilitate the deposition of the sludge cake layer, leading to serious membrane fouling.  相似文献   

20.
In an attempt at membrane fouling control, a kind of cylindrical plastic suspended carrier was added in a submerged membrane bioreactor (SMBR) and its effect was investigated in this study. According to the transmembrane pressure (TMP) profiles and the sludge characteristics in comparative runs with and without suspended carriers, it was found that the suspended carriers added in SMBR had two effects on membrane fouling: one was the positive effect of mechanically scouring the membrane surface and the other was the negative effect of breaking up sludge flocs. Sludge particle size distribution change was mainly responsible. It was suggested to apply the suspended carrier at higher MLSS concentration and lower carrier dose based on the consideration for retarding sludge breakage caused by the carrier. The experiment was conducted under higher MLSS (8 gL(-1)) and lower carrier dose (carrier volume/total volume = 10/). The TMP increase was effectively retarded by added suspended carriers compared to the system without addition of the carriers. The effect of suspended carriers on membrane fouling at high MLSS concentration was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号