首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PVC木塑复合材料热解动力学   总被引:2,自引:0,他引:2  
将木粉按一定比例添加到PVC中得到复合材料,通过热重分析研究复合材料在空气、N2气氛下不同升温速率时的热解行为。通过Doyle和Tang method法计算了木塑材料的降解活化能。利用活化能分布函数,分析了复合材料在热解、燃烧过程中不同阶段的反应活性变化规律。研究表明,热解过程可分为3个阶段,230~360℃为第一失重阶段,360~430℃为稳定阶段,430~580℃为第二失重阶段。升温速率及反应气氛对热解过程有显著影响。由分布活化能模型计算表明,其热解动力学为一级反应,两个失重阶段的活化能分别为220kJ·mol-1和139kJ·mol-1,反应活性随失重率的增加而减少。  相似文献   

2.
采用热重、质谱和红外测试等热分析技术,对垃圾衍生燃料(RDF)在不同气氛、不同升温速率、不同氧化钙和无烟煤掺量条件下燃烧过程的失重特性进行了研究。结果表明:(1)垃圾衍生燃料的燃烧过程包含四个阶段,第一阶段为自由水的蒸发过程;第二和第三失重段在空气气氛下表现为纤维类和橡胶等物质的裂解与燃烧,在氮气条件下体现为裂解;第四阶段为固定碳的燃烧及燃烧中间产物的分解过程。(2)空气气氛下的失重速率高于氮气气氛。(3)氧化钙和无烟煤的掺入可以提高RDF的着火温度、延缓燃尽时间。  相似文献   

3.
采用TG-DTG-DSC热分析联用技术研究了不同产地白肋烟的热解燃烧行为及其动力学,结果表明,从室温加热到800℃,不同产地的白肋烟热解燃烧过程均经历4个热失重过程,但温度范围不同,且每个阶段的质量和热量变化均不同,样品的主要反应发生在138~583℃内. 采用Coats-Redfern法对不同产地的白肋烟样品4个热失重阶段进行了动力学计算,结果表明,第I与第II阶段机理函数相同,而第III与第IV阶段机理函数相同;燃尽阶段的活化能明显比其他阶段的活化能高. 采用特殊收集装置收集4个热失重阶段的粒相产物,对其有害产物和致香成分的定量分析结果表明,不同产地的白肋烟样品在热解不同阶段产生的有害物质和致香成分的量有所不同,但大部分有害物质和致香成分在第II热失重阶段产生,且产生的量相对较大.  相似文献   

4.
以安徽淮北临涣工业园燃煤电厂煤样品和生活污水处理厂污泥样品为研究对象,采用热重分析法(TGA)对不同混合质量比条件下的煤与污泥进行了共燃实验,同时通过五种反应动力学模型研究了不同燃烧阶段煤、污泥样品共燃的动力学特征,揭示了煤和污泥的燃烧特性。研究结果表明,煤在529℃出现一个失重峰,污泥分别在140, 293和430℃出现三个失重峰,表明污泥的燃烧过程分为三个失重阶段,而煤只有一个失重阶段。煤的可燃性指数与综合燃烧特性指数为11.36×10–6 mg/(K–2•min), 47.16×10–10 K–3•min–2,与煤相比,污泥的可燃性指数与综合燃烧特性指数较低,分别为10.74×10–6 mg/(K–2•min), 13.04×10–10 K–3•min–2。在煤中添加污泥可以提高反应的燃烧特性,混合质量比以90(煤):10(污泥)为宜。随升温速率升高,煤与污泥的失重减少,燃烧失重速率增加,DTG曲线向高温区移动,产生热滞后现象。在固定碳燃尽阶段,混合燃料的活化能均位于两种原料之间,并且随污泥添加量增加而降低,表明污泥的添加有效提高了煤的反应活性并促进其燃烧过程。  相似文献   

5.
The thermal decomposition behavior of rigid polyurethane foams blown with water was studied by dynamic thermogravimetric analysis (TGA) in both nitrogen and air atmosphere at several heating rates ranging from room temperature to 800°C. The kinetic parameters, such as activation energy (E), degradation order (n), and pre‐exponential factor (A) were calculated by three single heating rate techniques of Friedman, Chang, and Coats–Redfern, respectively. Compared with the decomposition process in nitrogen, the decomposition of foams in air exhibits two distinct weight loss stages. The decomposition in nitrogen has the same mechanism as the first stage weight loss in air, but the second decomposition stage in air appears to be dominated by the thermo‐oxidative degradation. The heating rates have insignificant effect on the kinetic parameters except that the kinetic parameters at 5°C/min have higher values in nitrogen and lower values in air, indicating different degradation kinetics in nitrogen and air. The kinetic parameters of foam samples blown with different water level in formulation decline firstly and then increase when water level increases from 3.0 to 7.0 pph. According to the prediction for lifetime and half‐life time of foams, water‐blown rigid foams have excellent thermostability, when used as insulation materials below 100°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4149–4156, 2006  相似文献   

6.
随机孔模型应用于煤焦燃烧的动力学研究   总被引:1,自引:0,他引:1  
采用热重法研究煤焦在变温和等温条件下的燃烧过程,分析升温速率和温度对煤焦燃烧行为的影响,用随机孔模型(RPM)研究煤焦的燃烧失重过程,得到了煤焦燃烧变温和等温动力学方程. 实验结果表明,变温实验中,随着升温速率的增加,煤焦燃烧的失重曲线向高温方向移动,最大燃烧速率增加,升温速率由5℃/min增加到20℃/min时,最大燃烧速率由3.2%/min增加到11.3%/min;等温实验中,随着燃烧温度的提高,煤焦最大燃烧速率增加,燃烧温度由510℃增加到630℃时,最大燃烧速率由2.1%/min增加到8.3%/min,煤焦燃烧性能得到改善. 动力学计算结果表明,RPM能较好描述煤焦变温和等温燃烧过程中煤焦转化率与温度和时间的关系,煤焦变温和等温燃烧的表观活化能分别为84.27和64.16 kJ/mol.  相似文献   

7.
Although the UL-94 vertical flame test is often used to evaluate the flammability of polymers based on ignition time and combustion duration parameters, a significant amount of information regarding the time course of combustion is difficult to analyze in detail. Herein, image analysis of the time course of the upper and lower end heights, total area, and color division of flame was performed for polyolefins and polystyrene with different molecular weights in the vertical flame test. The combustion process was classified into two stages: before and after the first drip. In the first stage, the upward spread velocity, oscillation, and color of flame were analyzed. It was assumed that the difference in the fuel production rates or thermal decomposition products depends on the molecular structure. In the second stage, the melt flowability, flame position, and combustion continuity differed vastly depending on the molecular structure or molecular weight.  相似文献   

8.
Debinding binders in two stages is critical to maintaining the shape of injected parts; the resulting decomposition affects the strength and rigidity of a structure. This study determines the optimal debinding process on the basis of a higher binder removal rate and the production of defect-free parts. The feedstock used was a combination of alumina–zirconia powder with a binder that consists of high-density polyethylene (HDPE), paraffin wax (PW), and stearic acid (SA). During the first stage, the injected parts were immersed in an n-heptane solution at 50 °C, 60 °C, 65 °C, and 70 °C to remove PW and SA. Binder weight loss was evaluated as a function of time. In the second stage, HDPE was removed by using thermal debinding. The results show that the optimum solvent debinding process runs for 16 h at 60 °C. The weight loss of the binder reaches 41.1% and results in the formation of defect-free parts. The binders are degraded at approximately 550 °C during thermal debinding. This degradation resulted in decomposition of nearly 96.9% of the binders. Low heating rates (1 °C/min to 2 °C/min) prevent defects from forming in the injected parts.  相似文献   

9.
采用热重分析法研究了水稻秸秆(RS)、煤粉(PC)及两者不同掺混比的混合物在不同升温速率下(10, 20, 40℃/min)从室温升至1000℃的燃烧特性,用Kissinger?Akahira?Sunose (KAS)法和Flynn?Wall?Ozawa (FWO)法计算了燃烧过程中的活化能。结果表明,失重速率(DTG)曲线中RS比PC多一个失重峰,且残余质量低。随升温速率增加,所有样品DTG曲线均向高温偏移,产生热滞后现象。RS和PC在混合燃烧过程中存在协同效应,且高温区域内更显著。PC掺混比例为50wt%时,混合物平均活化能的计算值较低,仅为76.0 kJ/mol (KAS)和83.2 kJ/mol (FWO)。  相似文献   

10.
采用热重技术对稻壳(DK)和杨树锯末(JM)燃烧进行分析,考察了不同预处理方式对稻壳燃烧特性的影响,并研究了不同升温速率及稻壳和杨树锯末掺混质量比对掺混燃烧特性及燃烧动力学的影响。结果表明:水洗及酸洗可使稻壳燃烧TG-DTG热重曲线向高温区移动,最大失重速率及对应失重温度升高。水洗使稻壳综合燃烧特性指数提高2.5×10-7~5.9×10-7%/(min2·℃3),而酸洗使稻壳综合燃烧特性指数下降11×10-7~11.9×10-7%/(min2·℃3)。不同预处理后稻壳在挥发分析出燃烧阶段的活化能高于未处理稻壳,酸洗后稻壳焦炭燃烧阶段活化能降低16.94 kJ/mol,而水洗使稻壳焦炭燃烧阶段活化能升高。提高稻壳添加比例,混合燃料着火温度和燃尽温度降低。随着升温速率的提高,混合样品综合燃烧特性指数和残余率升高。70%稻壳和30%杨树锯末混合燃料在升温速率40℃/min下燃烧产生协同效应。  相似文献   

11.
Bagasse is a solid waste that remains after crushing sugarcane. Since bagasse is used as a fuel in sugar mills, characterization of its thermal degradation is rather important in order to use it efficiently. Thermal analysis of bagasse was carried out using differential thermal analysis (DTA) and thermogravimetry (TG) under oxidizing and inert atmospheres. Kinetic studies were based on weight loss obtained from TG analysis. Thermal degradation of bagasse takes place in two stages: volatilization and carbonization. The reaction rate, activation energy, entropy change, enthalpy change, and Gibbs free energy for the two thermal stages were calculated. The results indicated that activation energy for the volatilization stage is higher than that of decarbonization stage, and that both the rate constant and activation energy for combustion are higher than those of pyrolysis. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
随采用热重-傅立叶变换红外光谱(TGA-FTIR)联用技术研究了氧气气氛下橡塑保温材料的热解和燃烧行为。结果表明,橡塑保温材料TGA曲线有两个失重阶段,第一失重阶段是橡塑保温材料中NBR和PVC官能团的热氧降解,主要生成CO2、H2O、HCl及氰酸等气体逸出;第二阶段是材料中碳链受热燃烧,生成CO2逸出。  相似文献   

13.
A high‐pressure combustor and a metal/steam reactor were used to simulate the two‐stage combustion of a fuel‐rich propellant used for water ramjet engines. The solid combustion products from the two stages were collected and characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD). In addition, the thermal properties of the solid products of the primary combustion were characterized by differential thermal analysis (DTA) and simultaneous thermogravimetry (TG). The burning rates at different pressures were measured and the secondary combustion process in hot steam was monitored by high‐speed cinematography. The results showed that the propellant has a good combustion performance and a high burning rate. After primary combustion, the solid product mainly contained magnesium, magnesia, magnesium chloride, and carbon. During the secondary combustion, the ignition temperature was approximately 720 °C, and two burning stages were observed. The rest of magnesium hasn’t completely reacted with hot steam until the temperature reached a value higher than 800 °C for 30 min.  相似文献   

14.
J.Thomas Schrodt  Aquiles Ocampo 《Fuel》1984,63(11):1523-1527
Effects of retort temperature and constant heating rates on the pore structure of two eastern US oil shales were investigated experimentally. Surface areas calculated from N2 and CO2 adsorption data were observed to decrease during the early, low-temperature retort stage as a result of pore mouth blockage due to the formation of a thermoplast, and then to increase markedly above the raw shale values at higher temperature. The effect of heating rate was insignificant. A drastic loss of surface area occurred during air combustion, accompanied by an increase in pore volume in the mesopore size range.  相似文献   

15.
A two-stage pressurized fluidized-bed gasification process has been developed to produce low-heating value gases from coal char. The reactor was 0.075 m id. and 1.4 m long, and gasification experiments were conducted under pressures up to 790 kPa and at temperatures up to 1323 K. A partition disc was used to divide the fluidized bed into two stages, using the first stage as a partial combuster and gasifier and the second stage as a gasifier. The disc was designed to control compositions of coal char particles in both stages so that the heat required for the endothermic gasification reaction in the second stage can be provided by the heat of combustion in the first

For conditions examined here, the disc with an opening ratio of 40° was found to give optimum distribution of the char particles in both stages without ash agglomeration. It was also shown that all oxygen gas was completely consumed within the first stage

The heating value of the product gas increased with the char feed rale. However, there may be an oplimum Teed ratio of char and sand-particles since the higher char feed rate causes more frequent ash agglomeration as well as less carbon conversion  相似文献   

16.
The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol~(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.  相似文献   

17.
为充分利用果壳生物质废弃物,采用热重分析对油茶壳、核桃壳、澳洲坚果壳进行了燃烧实验研究,考察了不同升温速率下3种果壳生物质的燃烧特性及动力学参数。结果表明:3种果壳生物质燃烧特性不同,但燃烧特性参数均随升温速率升高而增大;随着升温速率的增加,着火点、燃尽温度、最大燃烧速率、平均燃烧速率及综合燃烧特性指数提高;10℃/min时,油茶壳、核桃壳、澳洲坚果壳综合燃烧特性指数分别为0.56×10-7、1.18×10-7、0.88×10-7;3种果壳生物质的燃烧反应遵循一级反应动力学模型,相关系数(R2)均达0.93以上,低温阶段活化能为30.40~52.41 kJ/mol,高温阶段活化能为18.49~40.62 kJ/mol,低温阶段活化能均大于高温阶段。  相似文献   

18.
油页岩半焦燃烧反应活性分析   总被引:3,自引:0,他引:3  
采用美国Perk in E lm er公司生产的Pyris1 TGA热重分析仪,对桦甸油页岩半焦进行燃烧特性试验研究,得到3种不同升温速率下的油页岩半焦燃烧特性曲线,并使用平均质量反应性指数和燃烧稳定性指数对半焦反应性加以评价。油页岩半焦燃烧分燃烧快速段、过渡段和燃烧慢速段3个阶段进行。随着升温速率的提高,在燃烧快速段,表观活化能为133.901 3—100.204 2 kJ/mol;在燃烧慢速段,表观活化能为146.317 1—211.409 3 kJ/mol。利用Coats-Redfern法确定了燃烧快速段反应级数为3,而燃烧慢速段则为5.5,从而得到油页岩半焦燃烧化学反应的动力学参数,为油页岩半焦的有效开发与经济利用提供了理论依据。  相似文献   

19.
The kinetics of the thermal decomposition of polytetrafluoroethylene (PTFE) have been studied using dynamic TG‐DTG at heating rates between 1 and 25°C/min at atmospheric pressure. Two different atmospheres were used: on the one hand, an inert atmosphere (N2)in order to study the pyrolysis of the material, and on the other hand an oxidative atmosphere (synthetic air) to study the combustion of the polymer. The same kinetic model has been applied simultaneously to runs performed at different heating rates and different atmospheres allowing a good correlation of the weight loss data. The kinetic model considers that the overall decomposition of the PTFE is done via two different parallel processes. Dynamic measurements were performed by combined thermogravimetry mass spectrometry (TG‐MS) in order to determine the decomposition products. The evolution of 2F4, CF4, COF2, HF, hydrocarbons, benzene and some other compounds has been also analyzed.  相似文献   

20.
Degradation in air has been carried out of some woods and agricultural residues at heating rates of 20 K/min. The thermal behaviour has also been investigated with commercial products taken as representative of the main biomass components. Weight loss curves for woods and agricultural residues can be interpreted by a three-step reaction scheme. The first, very fast step, can be attributed to the degradation of all the main components, the very slow second stage to lignin and hemi-cellulose degradation, while the third is the combustion of the solid residual. The amount of volatiles released in the first stage is higher for woods (75 to 77% of the total solid against 50 to 60%) of residues) and the process is displaced towards higher temperatures and thus associated with higher activation energies (values of about 75 to 100 kJ/mol for woods and 72 to 78 kJ/mol for residues). In all cases, devolatilization rates are very slow and almost constant in the second stage, with small amounts of volatiles released (6 to 9% for woods and 5 to 16% for residues) and comparable activation energies (86 to 92 kJ/mol for woods and 83 to 87 kJ/mol for residues). Combustion of chars from agricultural residues again starts at lower temperatures and is described by activation energies of 73 to 80 kJ/mol (against 71 to 90 kJ/mol for woods).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号