共查询到18条相似文献,搜索用时 93 毫秒
1.
为提高光伏阵列故障诊断的精度,提出一种基于核主成分分析(KPCA)和改进麻雀搜索算法(ISSA)优化核极限学习机(KELM)的光伏故障诊断方法。利用KPCA降维提取故障数据的非线性特征,减少外界条件产生的冗余数据,有效提高复杂故障识别准确率。通过融入Levy飞行和自适应权重t对麻雀搜索算法进行改进,并利用ISSA对KELM中的核参数γ和正则化系数C进行优化,建立了基于KPCA-ISSA-KELM的光伏阵列故障诊断模型。实验结果表明,经ISSA优化KELM的光伏阵列故障诊断模型与其他光伏阵列诊断模型相比,在故障诊断精度上达到97%,验证了该模型的准确性和有效性。 相似文献
2.
3.
受工作环境恶劣等原因影响,风机叶片常会出现裂纹、凹坑等缺陷。针对当前常用目标检测算法对风机叶片小尺寸缺陷检测准确率低的问题,提出一种基于EfficientDet算法的风机叶片缺陷检测方法。首先采集图像数据并建立Pascal VOC格式的风机叶片缺陷图像数据集,然后对EfficientDet算法中的主干特征提取网络进行改进,减少向下采样次数并调整有效特征层从而增强主干特征提取网络对小尺寸缺陷的检测能力,同时为特征融合网络增加融合路径提升算法的多尺度特征融合能力,选用FReLU作为激活函数实现像素级空间信息建模,并通过Mosaic数据增强和Focal Loss损失函数增加小尺寸缺陷样本对于检测器的贡献。在建立的风机叶片缺陷图像数据集上的测试结果表明改进后的算法模型平均类别精度达到了96.15%,相较于原版的EfficientDet提升了3.77%,对小目标的检测性能有明显提升。 相似文献
4.
作为捕获风能的关键部件,风机叶片受制造及运行载荷影响,可能存在不同程度的损伤,这会直接影响风机运行可靠性。为防止风机叶片持续损伤发生质量安全事故,需要开发1种快速简便且非植入安装式的检测方法来识别风机叶片的损伤情况。根据叶片损伤和叶片运行噪声间存在的物理相关性,提出了一种基于声学信号和卷积神经网络(convolutional neural network,CNN)的风机叶片损伤检测方法,将时序声学信号转换成二维频谱图片,结合健康频谱图生成残差频谱图,并通过训练卷积神经网络来识别风机叶片是否存在损伤。分析结果表明:该算法消除了叶轮旋转产生的固有叶片扫风声音对损伤识别的影响,提高了识别精度;以某地风机的实测数据为例进行算法分析,结果表明该算法的分类精度达到了96.9%,验证了基于卷积神经网络的检测方法的有效性和精确性。 相似文献
5.
为了实现“双碳”目标,对电站锅炉燃烧系统进行改造升级势在必行。首先利用精英反向学习策略、动态惯性权重和自适应t分布变异对麻雀搜索算法(SSA)的种群初始化和位置更新进行改进,获得一种新的改进麻雀搜索算法(ISSA)。然后通过ISSA优化核极限学习机(KELM)的正则化系数和核函数参数,建立ISAA-KELM锅炉燃烧特性预测模型。采用该预测模型对某超超临界660 MW机组实际运行数据进行预测,预测结果得到锅炉NOx排放质量浓度和锅炉热效率的平均绝对误差率分别为1.441 7%和0.023 9%,预测效果较好。最后,根据该模型预测结果,利用ISSA对2种典型工况锅炉运行可调参数进行寻优,优化后低负荷工况锅炉NOx排放质量浓度降低约91.73 mg/m3,热效率提高0.54%,高负荷工况锅炉NOx排放质量浓度降低约45.96 mg/m3,热效率提高0.50%。 相似文献
6.
月度煤电需求预测对于指导双碳目标下煤电发展及保障能源供应具有重要意义,但是月度煤电需求变化具有非平稳性、非线性的特点。为准确预测未来火电需求的变化,基于分解-集成思想,改进奇异谱分析(ISSA)将原始序列进行分解重构,得到多个不同频率的子序列,应用麻雀搜索算法(SSA)改进的极限学习机(ELM)模型预测各子序列,叠加后得到最终煤电需求预测值。以江苏省煤电需求为例,将所提方法与基于集合经验模态分解(EMD)的EMD-SSA-ELM模型和未经分解的SSA-ELM模型进行对比,结果表明所提方法能有效去除噪声分量的影响,误差值最小,平均绝对百分比误差相较于EMD-SSA-ELM与SSA-ELM分别降低8.0%和17.6%,预测精度更高,适用性更好。 相似文献
7.
滑坡灾害的发生受多种因素的影响,传统预报方法通常基于单一影响因素进行建模,预报精确度不高。为了提高滑坡发生概率预报精度,提出一种核主成分分析-麻雀搜索算法-广义回归神经网络(KPCA-SSA-GRNN)混合预测模型。首先,利用KPCA,筛选影响滑坡的主要致灾因子,并将其作为GRNN模型的输入;其次,为提高GRNN模型的预测效果,采用SSA算法对GRNN模型的光滑因子σ进行寻优;最后,对优化后的GRNN模型进行测试,输出滑坡灾害概率,并确定滑坡危险等级。以陕西省山阳县为研究区域,利用KPCA-SSA-GRNN模型进行预测,并将该模型预测结果与改进前的GRNN模型和传统的BP神经网络模型、RBF神经网络模型进行对比,结果表明,该模型在预报精度方面优于其他模型,对于滑坡预报提供了一定的理论参考。 相似文献
8.
为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用具有较强学习能力的极限学习机(extreme learning machine, ELM)替换传统DBN分类模型中的Softmax分类器,深入分析特征值与故障类型之间的关联性,提高模型的收敛速度。然后,利用麻雀搜索算法(sparrow search algorithm, SSA)优化ELM模型的输入权值和隐藏层节点偏置,以提高模型诊断结果的准确率和稳定性。最后,选用准确率、查全率、查准率和收敛速度对优化前后的模型进行性能评估。最终实验结果表明:所提出的DBN-SSAELM变压器故障诊断方法,故障诊断准确率高、泛化能力强、稳定性好,平均准确率达到96.50%,适用于变压器故障诊断。 相似文献
9.
行人检测在辅助驾驶和交通监测等方面有着广泛的应用,一直是计算机视觉领域中的研究热点和难点。传统特征提取方法对处在复杂环境中的行人难以有效地捕获具有区分度的特征信息。而目前流行的卷积神经网络因BP算法易陷入局部极小值,对泛化性能有所影响,且随着网络层的增加,一些显著特征信息逐层递减。针对上述问题,提出了融合深度感知特征与核极限学习机的行人检测算法。首先在CNN结构的基础上分两个阶段将前层特征与深层次特征融合后,送入后续层学习,构造一个DAGnet网络。随后采用实时性高,泛化能力强的核极限学习机对所得深度特征信息进行分类,并采用K-折交叉验证进行参数寻优;检测阶段,在DAGnet网络学习到的特征图上采用基于图论的显著性分析算法(GBVS),快速标注测试图像中行人的区域,然后在显著区域利用滑动窗口检测行人的精确位置。实验证明,所提算法在INRIA数据集和Caltech数据集的正检率均高于90%,在保证精度的情况下检测速度也得到明显提高。 相似文献
10.
针对核极限学习机(kernel extreme learning machine, KELM)单一预测模型不稳定以及预测结果不准确,提出了一种变分模态分解(variational mode decomposition, VMD)与麻雀搜索算法(sparrow search algorithm, SSA)优化的混合核极限学习机(hybrid extreme learning machine, HKELM)模型。首先把预处理后的负荷序列依据变分模态技术分解为若干相对平稳的模态分量,然后同时对每个模态分量建立VMD-SSA-HKELM预测模型;再将负荷数据划分训练集和测试集;依据训练集分别用SSA算法优化HKELM的参数,将测试集代入每个模型,所测的结果叠加得出最终预测值。该模型采用麻雀算法优化的混合核极限学习机,使其在不同的参数下有良好的局部搜索能力,且能增强全局搜索能力。仿真结果表明,VMD-SSA-HKELM模型预测精度接近98.5%,为超短期负荷预测及电力系统稳定运行提供了决策的支持。 相似文献
11.
12.
电动汽车用户充电行为的随机性,给电动汽车充电站充电负荷的短期预测带来极大挑战。针对在多因素影响下电动汽车充电站充电负荷短期预测精度低的问题,提出一种基于改进麻雀搜索算法-卷积神经网络-门控循环神经网络(improved sparrow search algorithm-convolutional neural network-gated recurrent unit neural network, ISSA- CNN-GRU)模型的电动汽车充电站充电负荷短期预测方法。首先,构建包含气温、日期类型、节假日3种充电负荷显著影响因素与历史充电负荷的输入特征矩阵。然后,融合CNN在特征提取、数据降维和GRU神经网络在时间序列预测上的优势,搭建CNN-GRU混合神经网络模型,使用基于混合策略的ISSA算法优化混合神经网络模型的超参数。最后,在优化后的CNN-GRU模型中输入特征矩阵实现充电站充电负荷的短期预测。以美国ANN-DATA公开数据集中充电站的历史负荷数据作为实际算例,与随机森林、CNN、GRU神经网络、CNN-GRU模型以及分别用贝叶斯优化、粒子群优化、标准麻雀优化算法进行超参数调优的CNN-GRU模型相比,实验结果表明所提方法具有更好的预测效果。 相似文献
13.
针对传统检测方法不能有效地从强混沌背景噪声中检测出小信号,本文研究了强杂波背景下小目标检测原理,提出了一种基于SSA-SVM的混沌小信号检测方法。利用麻雀搜索算法优化SVM惩罚参数C与核函数参数σ提高预测准确性,从而降低检测门限,提高检测率。在Lorenz混沌系统中加入目标信号进行仿真,结果表明:提出的方法能有效地从强混沌背景噪声中检测出小信号,瞬态小信号预测的均方根误差为0.000 434 3(信噪比为-137.707 3 dB),比传统SVM算法预测信号的均方根误差0.049(信噪比为-54.60 dB)降低了两个数量级。利用IPIX雷达实测海杂波数据,对所提方法进行实验验证,进一步说明了该方法的有效性。 相似文献
14.
针对风机叶片红外图像拼接困难的问题,提出了一种基于无人机速度信息的风机叶片红外图像拼接方法。首先,利用U-net网络预测获得叶片掩膜图像,从而去除冗余的背景信息;其次,计算平移、旋转、缩放参数使拼接图像配准;最后,使用Multiband Blend算法对拼接图像进行融合,消除视场与光照变化引起的拼缝。实验结果表明,本文提出的方法在拼接处x梯度方向上的RMSE小于SURF等传统图像拼接方法,拼接成功率达97.8%,并成功获取风机叶片红外全景图。将Multiband Blend算法应用于叶片红外图像融合,结果表明融合后图像拼接处RMSE显著降低,过渡更加平滑。 相似文献
15.
现有基于深度学习的目标检测方法在面对空中消费级无人机时,存在鲁棒性差、准确率不足等问题。 对此,提出一种基
于特征增强的 YOLOv4 目标检测方法—FEM-YOLOv4。 首先,针对无人机低、小、慢等特点,改进骨干网络,降低下采样倍数,充
分利用包含细粒度信息的浅层特征;其次,加入特征增强模块(feature enhancement module),通过使用不同空洞率的多分支卷积
层结构,综合不同深度的语义信息和空间信息,增强小尺度无人机的细节语义特征;另外,利用多尺度融合的特征金字塔结构,
突出特征图包含的细节信息和语义信息,提升模型对无人机目标的预测能力;最后,采用 K-means++算法对无人机目标候选框
的尺寸进行聚类分析。 与 6 种目标检算法进行对比,实验结果表明,FEM-YOLOv4 算法的 mAP 和 Recall 分别达到 89. 48%、
97. 4%,优于其他算法,且平均检测速度为 0. 042 s。 相似文献
16.
行星齿轮箱是风电机组中的重要部件,对风电机组的安全可靠运行具有重要意义。为此,提出一种基于深度特征融合网络的行星齿轮箱故障诊断方法,用于实现变速工况、样本不足和强噪声场景下的故障诊断。首先将原始信号扩展到多个特征域。其次利用多维堆栈稀疏自编码器提取各域特征。最后针对传统Softmax分类器对融合信息分类能力不足的问题,提出基于竞争粒子群算法优化的回声状态网络进行特征融合并输出诊断结果。经多场景不同故障诊断方法对比实验,所提方法在行星齿轮箱变速工况下分类效果良好,并对训练样本的减少和外界噪声有很强的鲁棒性。 相似文献
17.
为解决现有的智能电网电力盗窃行为检测方法中准确性不足、检测效率低下等问题,提出了一种由卷积自编码器网络(convolutional auto-encoders,?CAEs)和长短期记忆网络(long short term memory,?LSTM)相结合的CAEs-LSTM检测模型。该模型通过分析数据集的特点对电力数据进行二维转换,设计卷积自编码器结构,采用池化、下采样和上采样重构电力数据的二维空间特征,加入高斯噪声提高模型鲁棒性,并构建长短期记忆网络以学习全局时序特征。最后,对提取的时空特征进行融合从而检测能源窃贼,并进行了参数调优。在由国家电网公布的真实数据集上,通过将CAEs-LSTM模型与支持向量机、LSTM以及宽深度卷积神经网络进行对比,CAEs-LSTM模型的平均精度均值和曲线下面积值均最优。仿真实验表明,基于CAEs-LSTM模型的窃电检测方法具有更高的窃电检测效率和精度。 相似文献
18.
传统的目标检测算法及策略已经难以满足目标检测中数据处理的效率、性能、速度和智能化等各个方面要求.深度学习通过对大脑认知能力的研究和模仿以实现对数据特征的分析处理,具有强大的视觉目标检测能力,成为了当前目标检测的主流算法.首先回顾了传统目标检测的发展以及存在的问题;其次介绍以R-CNN为代表的结合region proposal和卷积神经网络(CNN)分类的目标检测框架(R-CNN、SPP-NET、Fast R-CNN、Faster R-CNN);然后介绍以YOLO算法为代表的将目标检测转换为回归问题的目标检测框架(YOLO、SSD);最后对深度学习的目标检测算法存在的问题做出总结,以及未来的发展方向. 相似文献