首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J 2 flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.  相似文献   

2.
Fracture toughness and fatigue crack growth tests and numerical simulations on 3PB specimens were carried out to study the behaviour of a crack lying perpendicular to the interface in a ductile/brittle bimaterial. Polymethylmethacrylate acrylic (PMMA) and aluminium alloy 2024 T531 were joined together using epoxy resin. A precrack was introduced into the ductile material and tests were carried out to obtain fracture toughness and fatigue properties. The body force method and elastic–plastic finite-element analyses were used to simulate the experimental stress intensity KI and cracking behaviour under monotonic and cyclic loads. It was found that the bimaterial fatigue crack growth rate is higher than that for monolithic aluminium 2024 but lower than the rate for a monolithic PMMA. This agreed with the trend for the fracture toughness values and was consistent with the numerical method results. The initial Mode I stable ductile cracking in the aluminium appears to ‘jump’ the interface and continues under mixed fracture Mode (I and II) in the PMMA material up to the final failure. A consistency between the simulation methods has indicated that the bimaterial fatigue crack growth is dominantly elastic with a small plastic zone near the crack tip.  相似文献   

3.
In this paper dynamic crack growth in an elastic-plastic material is analyzed under mode I plane strain small-scale yielding conditions using a finite element procedure. The main objective of this paper is to investigate the influence of anisotropic strain hardening on the material resistance to rapid crack growth. To this end, materials that obey an incremental plasticity theory with linear isotropic or kinematic hardening are considered. A detailed study of the near-tip stress and deformation fields is conducted for various crack speeds. The results demonstrate that kinematic hardening does not oppose the role of inertia in decreasing the plastic strains and stresses near the crack tip with increase in crack speed to the same extent as isotropic strain hardening. A ductile crack growth criterion based on the attainment of a critical crack opening displacement at a small micro-structural distance behind the tip is used to obtain the dependence of the theoretical dynamic fracture toughness with crack speed. It is found that for any given level of strain hardening, the dynamic fracture toughness displays a much more steep increase with crack speed over the quasi-static toughness for the kinematic hardening material as compared to the isotropic hardening case.  相似文献   

4.
H. Yuan 《Acta Mechanica》1997,121(1-4):51-77
Summary The near-tip stress and deformation rate fields of a crack dynamically propagating along an interface between dissimilar elastic-plastic bimaterials are presented in this paper. The elastic-plastic materials are characterised by theJ 2-flow theory with linear plastic hardening. The solutions are assumed to be of variable-separable form with a power-law singularity in the radial direction. Two distinct solutions corresponding to the tensile and shear solutions exist with slightly different singularity strengths and very different mixities at the crack tip. The phenomenon of discrete and determinate mixities at the interfacial crack tip is confirmed in dynamic crack growth. This is not an artifact of the variable-separable solution assumption, arising from the linear-hardening material model. The dynamic crack analysis shows that the mixity of the near-tip field is mainly determined by the given material parameters and affected slightly by the crack propagation velocity. A significant variation of the mixity is observed near to the coalescing point of the tensile and shear solutions. The strength of the singularity is almost determined by the smaller strain-hardening alone, and dynamic inertia decreases the stress intensity. The asymptotic solutions reveal that the crack propagation velocity changes only the stress field of the tensile mode significantly. With increasing the crack propagation velocity, the stress singularity of the tensile solutions decreases obviously and the stress triaxiality at the tip (=0) falls considerably at the unity effective stress. These observations imply that the fracture toughness of the interface crack under tensile mode may be significantly higher than that under quasi-static conditions.  相似文献   

5.
By use of the J 2 flow theory and the rectangular components of field quantities, the near-tip asymptotic fields are studied for a dynamic mode-I crack propagating in an incompressible power-law elastic-plastic material under the plan strain conditions. Through assuming that the stress and strain components near a dynamic crack tip are of the same singularity, the present paper constructs with success the fully continuous dominant stress and strain fields. The angular variations of these fields are identical with those corresponding to the dynamic crack propagation in an elastic-perfectly plastic material (Leighton et al., 1987). The dynamic asymptotic field does not reduce to the quasi-static asymptotic field in the limit as the crack speed goes to zero. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
It is well known that residual stresses influence the ductile fracture behaviour. In this paper, a numerical study was performed to assess the effect of residual stresses on ductile crack growth resistance of a typical pipeline steel. A modified boundary layer model was employed for the analysis under plane strain, Mode I loading condition. The residual stress fields were introduced into the finite element model by the eigenstrain method. A sharp crack was embedded in the center of the weld region. The complete Gurson model has been applied to simulate the ductile fracture by microvoid nucleation, growth and coalescence. Results show that tensile residual stresses can significantly reduce the crack growth resistance when the crack growth is small compared with the length scale of the tensile residual stress field. With the crack growth, the effect of residual stresses on the crack growth resistance tends to diminish. The effect of residual stress on ductile crack growth resistance seems independent of the size of geometrically similar welds. When normalized by the weld zone size, the ductile crack growth resistance collapses into one curve, which can be used to assess the structural integrity and evaluate the effect of residual stresses. It has also been found that the effect of residual stresses on crack growth resistance depends on the initial void volume fraction f0, hardening exponent n and T-stress.  相似文献   

7.
In this paper the elastoplastic solutions with higher-order terms for apex V-notches in power-law hardening materials have been discussed. Two-term expansions of the plane strain and the plane stress solutions have been obtained. It has been shown that the leading-order singularity approaches the value for a crack when the notch angle is not too large. In plane strain cases the elasticity does not enter the second-order solutions when the notch opening angle is too small. For a large notch angle, the two-term expansions of the plane strain near-tip fields are described by a single amplitude parameter. The plane stress solutions generally contain the elasticity terms. The boundary layer formulations based on the small-strain plasticity theory confirm that a dominance zone exists ahead of the notch tip. Finite element results give good agreement to the asymptotic solutions under both plane strain and plane stress conditions. The second-order terms cannot improve the predictions significantly. The near-tip fields are dominated by a single parameter. Finite element calculations under the finite strain J 2-flow plasticity theory revealed that the finite strains can only affect local characterization of the asymptotic solution. The asymptotic solution has a large dominance zone around the notch tip. For an apex notch bounded to a rigid substrate the leading-order singularity falls with the notch angle significantly more slowly than in the homogeneous material. It vanishes at the notch angle about 135° for all power-hardening exponents. The elasticity effects enter the second-order solutions when the notch angle becomes large enough. The tip fields are characterized by the hydrostatic stress and the shear stress ahead of the notch.  相似文献   

8.
In this paper, dynamic crack growth in an elastic-plastic material is analysed under mode I, plane strain, small-scale yielding conditions using a finite element procedure. The material is assumed to obey J2 incremental theory of plasticity with isotropic strain hardening which is of the power-law type under uniaxial tension. The influence of material inertia and strain hardening on the stress and deformation fields near the crack tip is investigated. The results demonstrate that strain hardening tends to oppose the role of inertia in decreasing plastic strains and stresses near the crack tip. The length scale near the crack tip over which inertia effects are dominant also diminishes with increase in strain hardening. A ductile crack growth criterion based on the attainment of a critical crack tip opening displacement is used to obtain the dependence of the theoretical dynamic fracture toughness on crack speed. It is found that the resistance offered by the elastic-plastic material to high speed crack propagation may be considerably reduced when it possesses some strain hardening.  相似文献   

9.
Characteristics and mechanism of fatigue crack growth in mild steel have been investigated taking account of crack tip deformations: crack tip opening displacement δt and the size of highly deformed zone ahead of crack tip Rx0.2 (the size of the zone with accumulated strain above 0.2). δt was measured directly at midsection of the specimen with a profile projector. Rx0.2 was obtained from strain distribution ahead of crack tip determined by the use of the recrystallizalion phenomenon.It is revealed that crack growth rates ranging from 0.02 μm/cycle to 200 μm/cycle are expressed well by a second power function of both δt and Rx0.2. Abrupt increases in μt and Rx0.2 occured at a growth rate of about 1 μm/cycle. At this growth rate, fracture appearance changed from striation to dimple. These transitions are due to the transition of stress state. It is also shown that fatigue fracture strain is constant independently of crack growth rate and is equal to the ductile fracture strain in monotonic loading. The constant fracture strain is the criterion for fatigue failure of ductile steels.  相似文献   

10.
Results on the asymptotic analysis of crack tip fields in elastic-plastic single crystals are presented and some preliminary results of finite element solutions for cracked solids of this type are summarized. In the cases studied, involving plane strain tensile and anti-plane shear cracks in ideally plastic f c c and b c c crystals, analyzed within conventional small displacement gradient assumptions, the asymptotic analyses reveal striking discontinuous fields at the crack tip.For the stationary crack the stress state is found to be locally uniform in each of a family of angular sectors at the crack tip, but to jump discontinuously at sector boundaries, which are also the surfaces of shear discontinuities in the displacement field. For the quasi-statically growing crack the stress state is fully continuous from one near-tip angular sector to the next, but now some of the sectors involve elastic unloading from, and reloading to, a yielded state, and shear discontinuities of the velocity field develop at sector boundaries. In an anti-plane case studied, inclusion of inertial terms for (dynamically) growing cracks restores a discontinuous stress field at the tip which moves through the material as an elastic-plastic shock wave. For high symmetry crack orientations relative to the crystal, the discontinuity surfaces are sometimes coincident with the active crystal slip planes, but as often lie perpendicular to the family of active slip planes so that the discontinuities correspond to a kinking mode of shear.The finite element studies so far attempted, simulating the ideally plastic material model in a small displacement gradient type program, appear to be consistent with the asymptotic analyses. Small scale yielding solutions confirm the expected discontinuities, within limits of mesh resolution, of displacement for a stationary crack and of velocity for quasi-static growth. Further, the discontinuities apparently extend well into the near-tip plastic zone. A finite element formulation suitable for arbitrary deformation has been used to solve for the plane strain tension of a Taylor-hardening crystal panel containing, a center crack with an initially rounded tip. This shows effects due to lattice rotation, which distinguishes the regular versus kinking shear modes of crack tip relaxation. and holds promise for exploring the mechanics of crack opening at the tip.  相似文献   

11.
Mode III fracture propagation is analyzed in a J 2-flow theory elastoplastic material characterized by a mixed isotropic/kinematic law of hardening. The asymptotic stress, back stress and velocity fields are determined under small-strain, steady-state, fracture propagation conditions. The increase in the hardening anisotropy is shown to be connected with a decrease in the thickness of the elastic sector in the crack wake and with an increase of the strength of the singularity. A second order analytical solution for the crack fields is finally proposed for the limiting case of pure kinematic hardening. It is shown that the singular terms of this solution correspond to fully plastic fields (without any elastic unloading sector), which formally are identical to the leading order terms of a crack steadily propagating in an elastic medium with shear modulus equal to the plastic tangent modulus in shear.  相似文献   

12.
In order to establish a ductile fracture criterion, several potential fracture parameters were investigated by comparing numerical simulations of crack extension with available experimental data. Based on the comparison, a fracture criterion, the Global-Local Fracture Criterion (GLFC), was proposed. The J-integral is employed as a global parameter to characterize the initial stage of crack extension. In the subsequent steady state crack growth, the fracture criterion is switched to a local parameter characterizing the crack tip stress or strain. The accuracy of the proposed fracture criterion in predicting ductile fracture behavior was verified.  相似文献   

13.
Employing an extension of the convective mesh technique, an Element Free Galerkin (EFG) based formulation for steady quasi-static crack growth in elastic-plastic materials undergoing small scale yielding is established. In accordance with the steady state condition, a parallel path constitutive law integration scheme is implemented into the formulation and a body force type term is introduced for the contribution of crack tip plasticity. A detailed numerical analysis is performed for steady quasi-static growth of a mode I crack under plane strain conditions in elastic-perfectly plastic materials. The numerical solutions to this problem confirm the existence of an elastic unloading wedge. The computed near-tip stress distributions and the crack opening displacements for this problem provide good agreements with the corresponding asymptotic solutions and demonstrate the validity of the EFG based formulation. A rough estimate of the range of validity of the asymptotic solutions is also made based on the numerical solutions. In addition, the effect of strain hardening on the steady quasi-static crack growth is investigated. Both power hardening and linear hardening models are considered.  相似文献   

14.
Cracks in thin structures often are subjected to combined in-plane and out-of-plane loading conditions leading to complex mixed mode conditions in the crack tip region. When applied to ductile materials, large out-of-plane displacements make both experimentation and modeling difficult. In this work, the mixed-mode behavior of thin, ductile materials containing cracks undergoing combined in-plane tension (mode I) and out-of-plane shear (mode III) deformation is investigated experimentally. Mixed-mode fracture experiments are performed and full, three-dimensional (3D) surface deformations of thin-sheet specimens from aluminum alloy and steel are acquired using 3D digital image correlation. General characteristics of the fracture process are described and quantitative results are presented, including (a) the fracture surface, (b) crack path, (c) load-displacement response, (d) 3D full-field surface displacement and strain fields prior to crack growth, (e) radial and angular distributions of the crack-tip strain fields prior to crack growth and (f) singularity analysis of the crack-tip strains prior to crack growth. Results indicate that the introduction of a mode III component to the loading process (a) alters the crack tip fields relative to those measured during nominally mode I loading and (b) significantly increases the initial and stable critical crack-opening-displacement. The data on strain fields in both AL6061-T6 aluminum and GM6208 steel consistently show that for a given strain component, the normalized angular and radial strains at all load levels can be reasonably represented by a single functional form over the range of loading considered, confirming that the strain fields in highly ductile, thin-sheet material undergoing combined in-plane tension and out-of-plane shear loading can be expressed in terms of separable angular and radial functions. For both materials, the displacement and strain fields are (a) similar for both mixed-mode loading angles Φ = 30° and Φ = 60° and (b) different from the fields measured for Mode I loading angle Φ = 0°. Relative to the radial distribution, results indicate that the in-plane strain components do not uniformly exhibit the singularity trends implicit in the HRR theory.  相似文献   

15.
A crack is steadily running in an elastic isotropic fluid-saturated porous solid at an intersonic constant speed c. The crack tip speeds of interest are bounded below by the slower between the slow longitudinal wave-speed and the shear wave-speed, and above by the fast longitudinal wave-speed. Biot’s theory of poroelasticity with inertia forces governs the motion of the mixture. The poroelastic moduli depend on the porosity, and the complete range of porosities n ∈ [0, 1] is investigated. Solids are obtained as the limit case n = 0, and the continuity of the energy release rate as the porosity vanishes is addressed. Three characteristic regions in the plane (n, c) are delineated, depending on the relative order of the body wave-speeds. Mode II loading conditions are considered, with a permeable crack surface. Cracks with and without process zones are envisaged. In each region, the analytical solution to a Riemann–Hilbert problem provides the stress, pore pressure and velocity fields near the tip of the crack. For subsonic propagation, the asymptotic crack tip fields are known to be continuous in the body [Loret and Radi (2001) J Mech Phys Solids 49(5):995–1020]. In contrast, for intersonic crack propagation without a process zone, the asymptotic stress and pore pressure might display a discontinuity across two or four symmetric rays emanating from the moving crack tip. Under Mode II loading condition, the singularity exponent for energetically admissible tip speeds turns out to be weaker than 1/2, except at a special point and along special curves of the (n, c)-plane. The introduction of a finite length process zone is required so that 1. the energy release rate at the crack tip is strictly positive and finite; 2. the relative sliding of the crack surfaces has the same direction as the applied loading. The presence of the process zone is shown to wipe out possible first order discontinuities.  相似文献   

16.
17.
The near-tip asymptotic field and full-field solution are obtained for a mode III crack in an elastic material with strain gradient effects. The asymptotic analysis shows that, even though the near-tip field is governed by a single parameter B (similar to the mode III stress intensity factor), the near-tip field is very different from the classical KIII field; stresses have r -3/2 singularity near the crack tip, and are significantly larger than the classical K III field within a zone of size l to the crack tip, where l is an intrinsic material length, depending on microstructures in the material. This high-order stress singularity, however, does not violate the boundness of strain energy around a crack tip. The parameter B of the near-tip asymptotic field has been determined for two anti-plane shear loadings: the remotely imposed classical K III field, and the arbitrary shear stress tractions on crack faces. The mode III full-field solution is obtained analytically for an elastic material with strain gradient effects subjected to remotely imposed classical K III field. It shows that the near-tip asymptotic field dominates within a zone of size 0.5 l to the crack tip, while strain gradient effects are clearly observed within 5l. It is also shown that the conventional way to evaluate the crack tip energy release rate would lead to an incorrect, infinite value. A new evaluation gives a finite crack tip energy release rate, and is identical to the J-integral. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Dr.-Ing. H. Yuan 《Acta Mechanica》1995,109(1-4):207-226
Summary In this work the asymptotic near-tip stress and velocity fields of a crack propagating steadily and quasi-statically along a ductile interface are presented for plane stress cases. The elastic-plastic materials are characterized by the J2-flow theory with linear plastic hardening. The solutions are assumed to be of variable-separable form with a power singularity in the radial distance to the crack tip. It is found that two distinct solutions exist with slightly different singularity strengths and very different mixities on the interface ahead of the crack tip. One of the solutions corresponds to a tensile-like mode and the other corresponds to a shear-like mode. An interface will change the near-tip fild of the tensile solution obviously, whereas the shear-like solution maintains its original structure as in homogeneous materials. In cases the elastic bimaterial parameter differs from zero, the two solutions can coalesce at some high strain-hardening. An interface between two high strain-hardening materials only slightly affects the stress and velocity distribution around the tip, whereas the singularity strength deviates from the homogeneous solutions. The strength of the singularity is predominantly determined by the smaller strain-hardening material. Poisson's ratio affects variation of the singularity as a function of strain-hardening slightly if the coalescing point of the variable-separable solution is not approached. Only for the very distinct elastic moduli the near-tip field approaches the rigid interface solution.  相似文献   

19.
Abstract— Mode I fatigue crack growth has been studied in notched specimens of 7017-T651 aluminium alloy subjected to fully compressive cyclic loads. The specimens were first subjected to a deliberate compressive preload which causes plastic deformation at the notch tip. On unloading, this region developed a residual tensile stress field and on subsequent compressive cyclic loading in laboratory air, a fatigue crack was nucleated at the notch and grew at a diminishing rate until it stopped. The final crack length increased with an increase in the value of the initial compressive preload and with an increase in the negative value of the applied cyclic mean load. To gain a better understanding of crack growth in residual stress fields, the magnitude and extent of residual stress induced from compressive preloads have been analysed. This was achieved when extending the notch by cutting while recording the change in the back face strain. From residual strain models it was found that the fatigue crack growth was confined to a region of tensile cyclic stress within the residual stress field. The effective stress intensity range was investigated at selected mean loads and amplitudes, for correlating purposes, using both the compliance technique and by invoking the crack growth rate behaviour of the alloy. Finally, a brief discussion of the fracture morphology of cracks subjected to cyclic compression is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号