首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hydrogen production using thermal energy, derived from nuclear reactor, can achieve large-scale hydrogen production and solve various energy problems. The concept of hydrogen and electricity cogeneration can realize the cascade and efficient utilization of high-temperature heat derive for very high temperature gas-cooled reactors (VHTRs). High-quality heat is used for the high-temperature processes of hydrogen production, and low-quality heat is used for the low-temperature processes of hydrogen production and power generation. In this study, two hydrogen and electricity cogeneration schemes (S1 and S2), based on the iodine-sulfur process, were proposed for a VHTR with the reactor outlet temperature of 950 °C. The thermodynamic analysis model was established for the hydrogen and electricity cogeneration. The energy and exergy analysis were conducted on two cogeneration systems. The energy analysis can reflect the overall performance of the systems, and the exergy analysis can reveal the weak parts of the systems. The analysis results show that the overall hydrogen and electricity efficiency of S1 is higher than that of S2, which are 43.6% and 39.2% at the hydrogen production rate of 100 mol/s, respectively. The steam generators is the components with the highest exergy loss coefficient, which are the key components for improving the system performance. This study presents a theoretical foundation for the subsequent optimization of hydrogen and electricity cogeneration coupled with VHTRs.  相似文献   

2.
The detailed thermodynamic evaluation for combined system assisted on solar energy for poly-generation are studied in this paper. This poly-generation cycle is operated by the concentrating solar radiation by using the parabolic dish solar collector series. The beneficial exits of this integrated plant are the electricity, fresh-water, hot-water, heating-cooling, and hydrogen while there are different heat energy recovery processes within the plant for development performance. A Rankine cycle with three turbines is employed for electricity production. In addition to that, the desalination aim is performed by utilizing the waste heat of electricity production cycle in a membrane distillation unit for fresh-water generation. Also, a PEM electrolyzer sub-component is utilized for hydrogen generation aim in the case of excess power generation. Finally, the hot-water production cycle is performed via the exiting working fluid from the very high-temperature generator of the cooling cycle. Moreover, based on the thermodynamic assessment outputs, the whole energy and exergy efficiencies of 58.43% and 54.18% are computed for the investigated solar plant, respectively.  相似文献   

3.
Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.  相似文献   

4.
In this paper, an Integrated Gasification Combined Cycle (IGCC), which uses waste tires as a feedstock, for power, hydrogen and freshwater production is modeled using both EES and Aspen Plus software packages and assessed thermodynamically. During the study, it is found that tire gasification is a viable solution for leftover tire waste in the world. Furthermore, the novel integration of a multi effect desalination plant, driven by the excess heat from the combined cycle, further increases the systems plant efficiency. The hydrogen production to feed rate ratio is found to be 0.154, which is competitive to high-quality coals, such as Illinois No.6, making waste tires an excellent feedstock to produce hydrogen. The net power production output from the combined cycle is 14.5 MW which was driven by the excess thermal energy of the syngas. The water distillate production rate from the forward flow multi-effect desalination plant at the set conditions is found to be 0.99 kg/s. The systems overall energy and exergy efficiencies obtained are 58.9% and 57.4%, respectively.  相似文献   

5.
Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2 from post-combustion capture and autothermal reforming of natural gas or biogas. Underground gas storage of hydrogen and oxygen was used in connection with the electrolysis to enable the electrolyser to follow the variations in the power produced by renewables. Six plant configurations, each with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59–72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated, and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (∼90%) for the plants. The specific methanol costs for the six plants are in the range 11.8–25.3 €/GJexergy. The lowest cost is obtained by a plant using electrolysis of water, gasification of biomass and autothermal reforming of natural gas for syngas production.  相似文献   

6.
Maogang He  Xinxin Zhang  Ke Zeng  Ke Gao 《Energy》2011,36(12):6821-6829
In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper.  相似文献   

7.
A new three step high temperature Cu-Cl thermochemical cycle for hydrogen production is presented. The performance of the proposed cycle is investigated through energy and exergy approaches. Furthermore, the effects of various parameters, such as the temperatures of the steps of the cycle and power plant efficiency, on various energy and exergy efficiencies are assessed with parametric studies. The results show that the exergy and energy efficiencies of the proposed cycle are 68.3% and 32.0%, respectively. In addition, the exergy analysis results reveal that the hydrogen production step has the maximum specific exergy destruction with a value of 150.9 kJ/mol. The results suggest that proposed cycle may provide enhanced options for high temperature thermochemical cycles by improving thermal management without causing a sudden temperature jump/fall between the hydrogen production step and other steps.  相似文献   

8.
The thermodynamic performance of an industrial waste heat recovery‐based trigeneration system is studied through energy and exergy efficiency parameters. The effects of exhaust gas inlet temperature, process heat pressure, and ambient temperature on both energy and exergy efficiencies, and electrical to thermal energy ratio of the system are investigated. The energy efficiency increases while electrical to thermal energy ratio and exergy efficiency decrease with increasing exhaust gas inlet temperature. On the other hand, with the increase in process heat pressure, energy efficiency decreases but exergy efficiency and electrical to thermal energy ratio increase. The effect of ambient temperature is also observed due to the fact that with an increase in ambient temperature, energy and exergy efficiencies, and electrical to thermal energy ratio decrease slightly. These results clearly show that performance evaluation of trigeneration system based on energy analysis is not adequate and hence more meaningful evaluation must include exergy analysis. The present analysis contributes to further information on the role of exhaust gas inlet temperature, process heat pressure, ambient temperature influence on the performance of waste heat recovery‐based trigeneration from a thermodynamic point of view. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A theoretical model was developed to study the electrical characteristics of a solid oxide steam electrolyzer (SOSE) for hydrogen production. The activation and concentration overpotentials at the electrodes as well as the ohmic overpotential at the electrolyte were considered as the main sources of voltage loss. The Butler–Volmer equation, Fick's model, and Ohm's law were applied to characterize the overpotentials. The theoretical model was validated as the simulation results agreed well with the experimental data from the literature. In the study of the component thickness effect, anode-support SOSE configuration was identified as the most favorable design. Further parametric analyses were performed to study the effects of material properties and operating conditions on the anode-supported SOSE cell performance. The results have shown that increasing electrode porosity and pore size can reduce the voltage loss. In the operation, both temperature and steam molar fraction can be increased to enhance the SOSE electrical efficiency. The pressure should be regulated depending on the current density. The electrochemistry model can be used to perform more analyses to gain insightful understanding of the SOSE hydrogen production principles and to optimize the SOSE cell and system designs.  相似文献   

10.
In this study, four potential methods are identified for geothermal-based hydrogen production, namely, (i) directly from the geothermal steam, (ii) through conventional water electrolysis using the electricity generated from geothermal power plant, (iii) using both geothermal heat and electricity for high temperature steam electrolysis and/or hybrid processes, (iv) using the heat available from geothermal resource in thermochemical processes to disassociate water into hydrogen and oxygen. Here we focus on relatively low-temperature thermochemical and hybrid cycles, due to their greater application possibility, and examine them as a potential option for hydrogen production using geothermal heat. We also present a brief thermodynamic analysis to assess their performance through energy and exergy efficiencies for comparison purposes. The results show that these cycles have good potential and become attractive due to the overall system efficiencies over 50%. The copper–chlorine cycle is identified as a highly promising cycle for geothermal hydrogen production. Furthermore, three types of industrial electrolysis methods, which are generally considered for hydrogen production currently, are also discussed and compared with the above mentioned cycles.  相似文献   

11.
The performance of hydrogen production via steam methane reforming (SMR) is evaluated using exergy analysis, with emphasis on exergy flows, destruction, waste, and efficiencies. A steam methane reformer model was developed using a chemical equilibrium model with detailed heat integration. A base-case system was evaluated using operating parameters from published literature. Reformer operating parameters were varied to illustrate their influence on system performance. The calculated thermal and exergy efficiencies of the base-case system are lower than those reported in literature. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions and heat transfer. A significant amount of exergy is wasted in the exhaust stream. The variation of reformer operating parameters illustrated an inverse relationship between hydrogen yield and the amount of methane required by the system. The results of this investigation demonstrate the utility of exergy analysis and provide guidance for where research and development in hydrogen production via SMR should be focused.  相似文献   

12.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

13.
In this study, thermodynamic analysis of solar-based hydrogen production via copper-chlorine (Cu–Cl) thermochemical water splitting cycle is presented. The integrated system utilizes air as the heat transfer fluid of a cavity-pressurized solar power tower to supply heat to the Cu–Cl cycle reactors and heat exchangers. To achieve continuous operation of the system, phase change material based on eutectic fluoride salt is used as the thermal energy storage medium. A heat recovery system is also proposed to use the potential waste heat of the Cu–Cl cycle to produce electricity and steam. The system components are investigated thoroughly and system hotspots, exergy destructions and overall system performance are evaluated. The effects of varying major input parameters on the overall system performance are also investigated. For the baseline, the integrated system produces 343.01 kg/h of hydrogen, 41.68 MW of electricity and 11.39 kg/s of steam. Overall system energy and exergy efficiencies are 45.07% and 49.04%, respectively. Using Genetic Algorithm (GA), an optimization is performed to evaluate the maximum amount of produced hydrogen. The optimization results show that by selecting appropriate input parameters, hydrogen production rate of 491.26 kg/h is achieved.  相似文献   

14.
Kalina cycle (KC) has been contemplated as one of the energy-efficient power generation cycles. It is suitable for various waste heat recovery applications. It is one of the competitors to Organic Rankine Cycle, Transcritical Cycle, Supercritical Cycle, and Rankine cycle. Kalina cycle system (KCS) is a binary mixture system that utilizes ammonia-water as working fluid. In this work, a parametric study has been made with a low-temperature Kalina cycle system (LTKCS) and a high-temperature Kalina cycle system (HTKCS). The LTKCS utilized the hot source energy from solar energy, whereas for HTKCS the hot stream of energy was received from a pressurized water nuclear reactor. The output and efficiencies (energy, exergy, and relative) were noted for a range of limits for the parameters considered. Separator temperature and turbine concentration have been considered as common parameters for the two KCSs. For LTKCS and HTKCS, the optimum working conditions for separator temperature and turbine concentration exist in the range 110?150°C, 60?100°C and 0.85–0.97, 0.50–0.80, respectively. The optimized values for LTKCS and HTKCS have been derived. Among the two KCSs, HTKCS produces high specific power (675 KW). The optimum value of exergy efficiency results for LTKCS (74%) pertaining to low exergy losses. Energy is recovered more efficiently in LTKCS. This study suggests that KCS is well suited for low-temperature applications.  相似文献   

15.
In this study, we present the thermodynamic feasibility analysis of a two-step hydrogen chloride cycle for sustainable hydrogen production. Exergy approach in addition to conventional energy approach is utilized to study the performance of the cycle. Here, a solid oxide membrane for the gas phase electrolysis of hydrogen chloride is employed and the temperature change between the cycle steps is eliminated for better thermal management. Moreover, a parametric study is conducted to observe the cycle variation with certain parameters such as operating temperature, current density, and hydrogen production rate. The calculated results show that with the use of the current cycle, one can produce 1 kg/s of hydrogen with the consumption of 335.8 MW electricity and 29.2 MW of thermal energy. Additionally, two different definitions of energy and exergy efficiencies are introduced to investigate the difference between actual and ideal (theoretical) cycle performances. The proposed cycle can be effectively used to produce hydrogen using concentrated solar and nuclear waste heat at high temperatures.  相似文献   

16.
提出了烧结机烟气中低温废热与甲醇蒸汽重整制氢整合的新方法,模拟建立了中低温废热结合甲醇重整制氢的系统.基于能的品位概念,采用EUD图像火用分析方法,揭示低品位的中低温废热转化为高品位化学能的能量转换特性;研究了中低温废热品位的提升随甲醇重整反应温度的变化规律.研究结果表明:新型制氢系统的火用效率有望达到82 8%,比传统甲醇制氢系统约高12个百分点,甲醇燃料节能率23.7%.另外,初步静态经济性分析表明:新系统可使氢气生产成本约为1.5元/m3,远低于电解水制氢成本(5.5元/m3).当甲醇原料成本价格保持在一定的价格范围内,其制氢成本可以与传统天然气制氢成本1.2元/m3相竞争.本研究为冶金工业同时解决中低温废热利用和制氢能耗高的难题提供了一个新途径.  相似文献   

17.
In this study, a solar thermal based integrated system with a supercritical-CO2 (sCO2) gas turbine (GT) cycle, a four-step Mg–Cl cycle and a five-stage hydrogen compression plant is developed, proposed for applications and analyzed thermodynamically. The solar data for the considered solar plant are taken for Greater Toronto Area (GTA) by considering both daily and yearly data. A molten salt storage is considered for the system in order to work without interruption when the sun is out. The power and heat from the solar and sCO2-GT subsystems are introduced to the Mg–Cl cycle to produce hydrogen at four consecutive steps. After the internal heat recovery is accomplished, the heating process at required temperature level is supplied by the heat exchanger of the solar plant. The hydrogen produced from the Mg–Cl cycle is compressed up to 700 bar by using a five-stage compression with intercooling and required compression power is compensated by the sCO2-GT cycle. The total energy and exergy inputs to the integrated system are found to be 1535 MW and 1454 MW, respectively, for a 1 kmol/s hydrogen producing plant. Both energy and exergy efficiencies of the overall system are calculated as 16.31% and 17.6%, respectively. When the energy and exergy loads of the receiver are taken into account as the main inputs, energy and exergy efficiencies become 25.1%, and 39.8%, respectively. The total exergy destruction within the system is found to be 1265 MW where the solar field contains almost 64% of the total irreversibility with a value of ~811 MW.  相似文献   

18.
In this paper, a comprehensive thermodynamic evaluation of an integrated plant with biomass is investigated, according to thermodynamic laws. The modeled multi-generation plant works with biogas produced from demolition wood biomass. The plant mainly consists of a biomass gasifier cycle, clean water production system, hydrogen production, hydrogen compression, gas turbine sub-plant, and Rankine cycle. The useful outputs of this plant are hydrogen, electricity, heating and clean water. The hydrogen generation is obtained from high-temperature steam electrolyzer sub-plant. Moreover, the membrane distillation unit is used for freshwater production, and also, the hydrogen compression unit with two compressors is used for compressed hydrogen storage. On the other hand, energy and exergy analyses, as well as irreversibilities, are examined according to various factors for examining the efficiency of the examined integrated plant and sub-plants. The results demonstrate that the total energy and exergy efficiencies of the designed plant are determined as 52.84% and 46.59%. Furthermore, the whole irreversibility rate of the designed cycle is to be 37,743 kW, and the highest irreversibility rate is determined in the biomass gasification unit with 12,685 kW.  相似文献   

19.
This paper analyzes an integrated HyS cycle (hybrid sulfur cycle), isobutane cycle and electrolyzer for hydrogen production. The operating parameters such as concentration, pressure and temperature are varied to investigate their effects on the energy and exergy efficiencies of the system with/without heat recovery and integration, as well as the decomposer and rate of hydrogen produced. A new heat exchanger network is also developed to recover heat within the HyS cycle in the most efficient manner. The exergy destruction rate in each component is analyzed and discussed. From the results, increasing the pressure is beneficial up to 3222 kPa, after which the performance remains constant. The exergy efficiency varies more significantly with operating parameters than the energy efficiency. The maximum exergy destruction occurs in the heat exchanger so this component should be the focus to enhance the overall performance of the system.  相似文献   

20.
In this study, geothermal-based hydrogen production methods, and their technologies and application possibilities are discussed in detail. A high-temperature electrolysis (HTE) process coupled with and powered by a geothermal source is considered for a case study, and its thermodynamic analysis through energy and exergy is conducted for performance evaluation purposes. In this regard, overall energy and exergy efficiencies of the geothermal-based hydrogen production process for this HTE are found to be 87% and 86%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号