首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of murein hydrolases is a critical aspect of peptidoglycan growth and metabolism. In the present study, we demonstrate that mutations within the Staphylococcus aureus virulence factor regulatory genes, agr and sar, affect autolysis, resulting in decreased and increased autolysis rates, respectively. Zymographic analyses of these mutant strains suggest that agr and sar exert their effects on autolysis, in part, by modulating murein hydrolase expression and/or activity.  相似文献   

2.
The gene for a novel endotype membrane-bound lytic transglycosylase, emtA, was mapped at 26.7 min of the E. coli chromosome. EmtA is a lipoprotein with an apparent molecular mass of 22kDa. Overexpression of the emtA gene did not result in bacteriolysis in vivo, but the enzyme was shown to hydrolyze glycan strands isolated from murein by amidase treatment. The formation of tetra- and hexasaccharides, but no disaccharides, reflects the endospecificity of the enzyme. The products are characterized by the presence of 1,6-anhydromuramic acid, indicating a lytic transglycosylase reaction mechanism. EmtA may function as a formatting enzyme that trims the nascent murein strands produced by the murein synthesis machinery into proper sizes, or it may be involved in the formation of tightly controlled minor holes in the murein sacculus to facilitate the export of bulky compounds across the murein barrier.  相似文献   

3.
The two 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD) hydrolase genes, etbD1 and etbD2, were cloned from a strong polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, and their nucleotide sequences were determined. The etbD2 gene was located in the vicinity of bphA gene homologs and encoded an enzyme whose amino-terminal sequence was very similar to the amino-terminal sequence of the HOHD hydrolase which was purified from RHA1. Using the etbD2 gene fragment as a probe, we cloned the etbD1 gene encoding the purified HOHD hydrolase by colony hybridization. Both genes encode a product having 274 amino acid residues and containing the nucleophile motif conserved in alpha/beta hydrolase fold enzymes. The deduced amino acid sequences were quite similar to the amino acid sequences of the products of the single-ring aromatic hydrolase genes, such as dmpD, cumD, todF, and xylF, and not very similar to the amino acid sequences of the products of bphD genes from PCB degraders, including RHA1. The two HOHD hydrolase genes and the RHA1 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HPDA) hydrolase gene, bphD, were expressed in Escherichia coli, and their relative enzymatic activities were examined. The product of bphD was very specific to HPDA, and the products of etbD1 and etbD2 were specific to HOHD. All of the gene products exhibited poor activities against the meta-cleavage product of catechol. These results agreed with the results obtained for BphD and EtbD1 hydrolases purified from RHA1. The three hydrolase genes exhibited similar induction patterns both in an RNA slot blot hybridization analysis and in a reporter gene assay when a promoter probe vector was used. They were induced by biphenyl, ethylbenzene, benzene, toluene, and ortho-xylene. Strain RCD1, an RHA1 mutant strain lacking both the bphD gene and the etbD2 gene, grew well on ethylbenzene. This result suggested that the etbD1 gene product is involved in the meta-cleavage metabolic pathway of ethylbenzene.  相似文献   

4.
Lysis of Escherichia coli by bacteriophage phi X174 is caused by the phage protein E. As protein E is devoid of enzymatic activities it has been postulated that lysis is the result of an induction of the autolytic enzymes of the host. This hypothesis was investigated by comparing the murein composition before and during lysis of either phi X174 infected cells or protein E induced lysis of E. coli. Additionally, protein E-mediated lysis was compared with induction of the autolytic system by EDTA. The analysis showed that the overall composition of murein is not changed after induction of protein E-mediated lysis. Nevertheless, murein degradation seems to be stimulated by the action of protein E as shown by an increase in the total amount of murein turnover products by about 10%. It could be shown that an intact murein sacculus prevents the phages from being released.  相似文献   

5.
Affinity chromatography using different lytic transglycosylases as a specific ligand revealed an interaction of both murein hydrolases and murein synthases. This interaction is taken as evidence for the assemblage into a multienzyme complex that could function as a murein replicase precisely copying the given three-dimensional structure of the murein sacculus. The sacculus of the mother cell would function as a template, which is identically replicated by copying the lengths of the existing glycan strands and the pattern of crosslinkages. A hypothetical enzyme complex specifically involved in cell division and a complex specifically involved in cell elongation are presented. It is postulated that PBPs 1a and/or 1b are present in both complexes, whereas the presence of PBP2 or PBP3 defines the specificity of the murein-synthesizing machinery as being involved in either cell elongation or septation. Moreover, the proposed "holoenzyme" suprastructure could explain why the specific inhibition of PBPs 1a/1b results in bacteriolysis and why inhibition of PBP2 and PBP3 causes the well-known morphological alterations, spherical growth, and filamentation, respectively.  相似文献   

6.
The pesticin activity and immunity genes on plasmid pPCP1 of Yersinia pestis were sequenced. They encoded proteins of 40 kDa (pesticin) and 16 kDa (immunity protein); the latter was found in the periplasm. The location of the immunity protein suggests that imported pesticin is inactivated in the periplasm before it hydrolyzes murein. Pesticin contains a TonB box close to the N-terminal end that is identical to the TonB box of colicin B. The DNA sequences flanking the pesticin determinant were highly homologous to those flanking the colicin 10 determinant. It is proposed that through these highly homologous DNA sequences, genes encoding bacteriocins may be exchanged between plasmids by recombination. In the case of pesticin, recombination may have destroyed the lysis gene, of which only a rudimentary fragment exists on pPCP1.  相似文献   

7.
We have developed a genetic screen of the yeast Saccharomyces cerevisiae to identify genes that act to coordinate DNA replication so that each part of the genome is copied exactly once per cell cycle. A mutant was recovered in this screen that accumulates aberrantly high DNA contents but does not complete a second round of synthesis. The mutation principally responsible for this phenotype is in the DOA4 gene, which encodes a ubiquitin hydrolase, one of several yeast genes that encode enzymes that can remove the signalling polypeptide ubiquitin hydrolase, one of several yeast genes that encode enzymes that can remove the signaling polypeptide ubiquitin from its covalently linked conjugated forms. DOA4 is nonessential, and deleting this gene causes uncoordinated replication. Overreplication does not occur in cells with limiting amounts of Cdc7 protein kinase, suggesting that entry into S phase is required for this phenotype. The DNA formed in doa4 mutants is not highly unusual in the sense that mitotic recombination rates are normal, implying that a high level of repair is not induced. The temperature sensitivity of doa4 mutations is partially suppressed by extra copies of the polyubiquitin gene UB14, but overreplication still occurs in the presence of this suppressor. Mutations in DOA4 cause loss of the free ubiquitin pool in cells under heat stress conditions, and extra copies of UB14 restore this pool without restoring coordination of replication. We conclude that a ubiquitin-mediated signaling event directly involving the ubiquitin hydrolase encoded by DOA4 is needed in S. cerevisiae to prevent uncoordinated DNA replication.  相似文献   

8.
The DNA sequence analysis of the F0F1-ATPase operon of the bacterium Mycoplasma pneumoniae predicted that the subunit b, encoded by the gene atpF, is a lipoprotein of the murein lipoprotein type of Escherichia coli. Here we experimentally verify this prediction by metabolic labeling of subunit b with [14C]palmitic acid and by in vivo interfering with the processing of the prolipoprotein form of subunit b by the antibiotic globomycin, a specific inhibitor of the signal peptidase II. Our results suggest that the subunit b of the F0F1-ATPase of M. pneumoniae is anchored at the cytoplasmic membrane by an N-terminal lipid modification in addition to its transmembrane domain. The lipoprotein nature of subunit b and its proposed membrane topology seems to be characteristic for mycoplasmas, since among all sequenced bacterial atpF genes, only those from Mycoplasma gallisepticum and Mycoplasma genitalium code for a conserved lipoprotein consensus sequence.  相似文献   

9.
2-Ketocyclohexanecarboxyl coenzyme A (2-ketochc-CoA) hydrolase has been proposed to catalyze an unusual hydrolytic ring cleavage reaction as the last unique step in the pathway of anaerobic benzoate degradation by bacteria. This enzyme was purified from the phototrophic bacterium Rhodopseudomonas palustris by sequential Q-Sepharose, phenyl-Sepharose, gel filtration, and hydroxyapatite chromatography. The sequence of the 25 N-terminal amino acids of the purified hydrolase was identical to the deduced amino acid sequence of the badI gene, which is located in a cluster of genes involved in anaerobic degradation of aromatic acids. The deduced amino acid sequence of badI indicates that 2-ketochc-CoA hydrolase is a member of the crotonase superfamily of proteins. Purified BadI had a molecular mass of 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a native molecular mass of 134 kDa as determined by gel filtration. This indicates that the native form of the enzyme is a homotetramer. The purified enzyme was insensitive to oxygen and catalyzed the hydration of 2-ketochc-CoA to yield pimelyl-CoA with a specific activity of 9.7 micromol min(-1) mg of protein(-1). Immunoblot analysis using polyclonal antiserum raised against the purified hydrolase showed that the synthesis of BadI is induced by growth on benzoate and other proposed benzoate pathway intermediates but not by growth on pimelate or succinate. An R. palustris mutant, carrying a chromosomal disruption of badI, did not grow with benzoate and other proposed benzoate pathway intermediates but had wild-type doubling times on pimelate and succinate. These data demonstrate that BadI, the 2-ketochc-CoA hydrolase, is essential for anaerobic benzoate metabolism by R. palustris.  相似文献   

10.
Replacement of Fhit in cancer cells suppresses tumorigenicity   总被引:1,自引:0,他引:1  
The candidate tumor suppressor gene, FHIT, encompasses the common human chromosomal fragile site at 3p14.2, the hereditary renal cancer translocation breakpoint, and cancer cell homozygous deletions. Fhit hydrolyzes dinucleotide 5',5"'-P1,P3-triphosphate in vitro and mutation of a central histidine abolishes hydrolase activity. To study Fhit function, wild-type and mutant FHIT genes were transfected into cancer cell lines that lacked endogenous Fhit. No consistent effect of exogenous Fhit on growth in culture was observed, but Fhit and hydrolase "dead" Fhit mutant proteins suppressed tumorigenicity in nude mice, indicating that 5',5"'-P1, P3-triphosphate hydrolysis is not required for tumor suppression.  相似文献   

11.
A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed.  相似文献   

12.
The formation of the components of the cell envelope of Acinetobacter sp. 199A was investigated by measuring the incorporation of [3H]leucine into protein, [14C]galactose into lipopolysaccharide, 32P into phospholipid, and [3H]diaminopimelic acid into peptidoglycan. Whereas the lipopolysaccharide and intrinsic protein of the outer membrane were stable, some of the regularly arranged surface protein, the alpha-protein, was lost into the growth medium. Only newly synthesized alpha-protein was lost. The peptidoglycan of the murein layer was also labile. Selective inhibition of the formation of individual components of the cell envelope with penicillin, chloramphenicol, and bacitracin showed that incorporation of protein into the outer membrane required the simultaneous formation of complete lipopolysaccharide. The converse was not true: protein synthesis was not required for lipopolysaccharide incorporation. Formation of the outer membrane and the murein layer proceeded independently.  相似文献   

13.
14.
The synthesis of the murein precursor lipid I is performed by MraY. We have shown that mraY is an essential gene for cell growth. Cells depleted of MraY first swell and then lyse. The expression of mraY DNA in vitro produces a 40-kDa polypeptide detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

15.
When a bacterial cell is infected with a T-even coliphage, immunity to a superinfecting phage is rapidly established (superinfection exclusion). Two phage-encoded proteins, Imm and Sp, are responsible for this exclusion: Imm blocks DNA transfer across the plasma membrane and partially inhibits release of DNA from the superinfecting virion, and Sp inhibits local degradation of bacterial murein by a phage-associated lysozyme.  相似文献   

16.
Lung cancers are a heterogeneous group of tumors broadly classified as small cell or non-small cell lung cancers. In each case, numerous DNA mutations precede tumor formation, resulting in the activation of growth stimulatory genes and the loss of tumor suppressor genes. The known cellular functions of the tumor suppressor genes most commonly affected in lung cancer are reviewed herein, including the retinoblastoma (Rb) gene on chromosome 13q14, the p53 gene on 17p13, and the cyclin-dependent kinase inhibitor (CDKN2) gene on 9p21. The chromosomal locations for other potential tumor suppressor genes are on chromosomes 3p, 9p, and 11p. Candidate genes in these regions include the von Hippel-Lindau (VHL) gene at 3p25, the ubiquitin-activating enzyme homologue (UBE1L at 3p21, the genes for the dinucleoside polyphosphate hydrolase FHIT and receptor protein-tyrosine phosphatase gamma PTPRG at 3p14.2, the genes for tropomyosin beta (TM1) and a talin homologue (talin) at 9p21, and the H-ras gene at 11p15.  相似文献   

17.
Leukotriene A4 (LTA4) hydrolase is a bifunctional zinc metalloenzyme which catalyzes the final step in the biosynthesis of the proinflammatory leukotriene B4 and which also possesses a peptidase activity. From sequence comparisons with aminopeptidases, a tyrosine at position 383 in LTA4 hydrolase has been suggested as a possible catalytic amino acid. To explore the potential role of this amino acid in catalysis, we replaced the tyrosine residue with phenylalanine, histidine or glutamine residues by site-directed mutagenesis. The mutated cDNAs were expressed in Escherichia coli and the resulting recombinant proteins, named [Y383F]LTA4 hydrolase, [Y383H]LTA4 hydrolase and [Y383Q]LTA4 hydrolase, were purified to homogeneity to allow assays of both the epoxide hydrolase activity, i.e. the conversion of LTA4 into leukotriene B4, and the peptidase activity. None of the mutated proteins exhibited significant peptidase activities, all of them showing activities less than 0.3% that of the wild-type enzyme. The epoxide hydrolase activity was not affected to the same degree and corresponded to 11, 16 and 17% that of the unmutated enzyme for [Y383F]LTA4 hydrolase, [Y383H]LTA4 hydrolase and [Y383Q]LTA4 hydrolase, respectively. Kinetic analysis was performed with the mutant [Y383Q]LTA4 hydrolase, which revealed an approximately 10-fold increase in Km for leukotriene A4 compared to that for the unmutated enzyme. At high concentrations of substrate, the difference in enzyme velocity was only moderate, with Vmax values of 600 nmol.mg-1.min-1 and 1000 nmol.mg-1.min-1 for [Y383Q]LTA4 hydrolase and the wild-type enzyme, respectively. No such effect of substrate concentration could be observed on the peptidase activity. As a positive control, we exchanged a glycine residue in position 386 for an alanine residue, and the recombinant protein, [G386A]LTA4 hydrolase retained 19% and 77% of the peptidase and epoxide hydrolase activities, respectively. The results from this study are consistent with a role for Tyr383 in the peptidase reaction of LTA4 hydrolase, where it may act as a proton donor in a general base mechanism. However, our data do not allow a similar interpretation for the mechanism involved in the hydrolysis of LTA4 into LTB4.  相似文献   

18.
orf186, a new member of the Nudix hydrolase family of genes, has been cloned and expressed, and the protein has been purified and identified as an enzyme highly specific for compounds of ADP. Its three major substrates are adenosine(5')triphospho(5')adenosine, ADP-ribose, and NADH, all implicated in a variety of cellular regulatory processes, supporting the notion that the function of the Nudix hydrolases is to monitor the concentrations of reactive nucleoside diphosphate derivatives and to help modulate their accumulation during cellular metabolism.  相似文献   

19.
ADP-ribosylation is a reversible post-translational modification of proteins involving the addition of the ADP-ribose moiety of NAD to an acceptor protein or amino acid. NAD:arginine ADP-ribosyltransferase, purified from numerous animal tissues, catalyzes the transfer of ADP-ribose to an arginine residue in proteins. The reverse reaction, catalyzed by ADP-ribosylarginine hydrolase, removes ADP-ribose, regenerating free arginine. An ADP-ribosylarginine hydrolase, purified extensively from turkey erythrocytes, was a 39-kDa monomeric protein under denaturing and non-denaturing conditions, and was activated by Mg2+ and dithiothreitol. The ADP-ribose moiety was critical for substrate recognition; the enzyme hydrolyzed ADP-ribosylarginine and (2-phospho-ADP-ribosyl)arginine but not phosphoribosylarginine or ribosylarginine. The hydrolase cDNA was cloned from rat and subsequently from mouse and human brain. The rat hydrolase gene contained a 1086-base pair open reading frame, with deduced amino acid sequences identical to those obtained by amino terminal sequencing of the protein or of HPLC-purified tryptic peptides. Deduced amino acid sequences from the mouse and human hydrolase cDNAs were 94% and 83% identical, respectively to the rat. Anti-rat brain hydrolase polyclonal antibodies reacted with turkey erythrocyte, mouse and bovine brain hydrolase. The rat hydrolase, expressed in E. coli, demonstrated enhanced activity in the presence of Mg2+ and thiol, whereas the recombinant human hydrolase was stimulated by Mg2+ but was thiol-independent. In the rat and mouse enzymes, there are five cysteines in identical positions; four of the cysteines are conserved in the human hydrolase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号