首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,一些国家选择硬泥岩作为核废物地质深部处置的围岩。为深入理解硬泥岩在热-水-力(THM)耦合作用下的变化特征,在瑞士的Mont Terri地下岩石实验室对Opalinus硬泥岩进行了现场加热试验。该试验是利用-电加热器(直径=30cm,长度=5.4m)对硬泥岩进行了1a多的加热,然后降温0.5a。加热器表面的最高温度达100℃。在试验过程中,安装了80多个测试传感器对硬泥岩中的温度、孔隙水压、气体渗透以及变形进行了监控。通过观察发现围岩受热膨胀且产生明显的孔隙水压升高。距加热器约1m的区域,其孔隙水压从约1MPa增高到4MPa。最后对试验中观测的硬泥岩受热所产生的热-水-力全过程进行了模拟计算,并介绍了现场测量和数值计算的初步结果。  相似文献   

2.
In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydromechanical(THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions:(1) rock stress covering the range from the lithostatic state to redistributed levels after excavation;(2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions;(3)gas generation from corrosion of metallic components within repositories; and(4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90℃ and even beyond to150℃. Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied:(1) fundamental concept for effective stress in the porous clay-water system;(2) stressdriven deformation and damage as well as resulting permeability changes;(3) moisture influences on mechanical properties;(4) self-sealing of fractures under mechanical load and swelling/slaking of clay minerals upon water uptake;(5) gas migration in fractured and resealed claystones; and(6) thermal impact on the hydro-mechanical behavior and properties. Major findings from the investigations are summarized in this paper.  相似文献   

3.
Initiated in 1992, the DECOVALEX project is an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical (THM) processes in geologic systems. The project has made important scientific achievements through three stages and is progressing in its fourth stage. It has played a key role in the development of mathematical modeling and in situ testing of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance for performance assessment of radioactive waste geologic repositories. This paper summarizes studies under the most recent stage of the project, DECOVALEX III (2000–2003). These studies include those of two major field experiments: (a) the FEBEX experiment at Grimsel, Switzerland, investigating coupled THM processes in a crystalline rock-bentonite system, and (b) the Drift Scale Test (DST) experiment at Yucca Mountain, Nevada, investigating coupled THM processes in unsaturated tuff. These are two of the largest multiyear heater tests undertaken to date for the study of coupled THM processes in geological systems. In addition, three so-called benchmark tests are also studied to evaluate the impact of coupled THM processes under different scenarios and geometries. Within the DECOVALEX project, multiple research teams participated in each of the studies, using different approaches and computer codes. Comparisons of results have provided insight into coupled THM processes, which in turn has stimulated further development of our modeling capabilities. Lessons learned from these studies are discussed. The scientific advances and enhanced insight gained through this kind of international cooperation illustrate the effectiveness of the DECOVALEX project.  相似文献   

4.
采用高放射性核废料处置库模型试验,以核废料处置库近场的膨润土及岩石为研究对象,建立轴对称模型,选用适当的热、水、力本构方程,运用有限元软件code-bright对核废料处置库关闭后处置库近场的温度场、渗流场、应力场进行考虑TH, HM, TM部分耦合与THM完全耦合的数值模拟分析。得到处置库关闭后近场膨润土及岩石内温度、液体饱和度、应力的变化规律及不同耦合对这些性状影响的敏感度。结果可为核废料处置库的规划、设计以及数值分析时耦合类型的选择提供参考。  相似文献   

5.
A large-scale in situ experiment was conducted at the Kamaishi mine, Japan. The objectives of this thermo-hydro-mechanical (T-H-M) test were to evaluate the applicability of the engineered barrier technology, to observe near-field-coupled T-H-M phenomena in situ and to increase confidence in coupled T-H-M models. A test pit with a diameter of 1.7 m and a depth of 5.0 m was excavated in the floor of an alcove near a drift in the mine. An electric heater was installed in an annulus with a diameter of 1.04 m and a height of 1.95 m. The heater was placed in the center of the pit and buffer material was compacted around the heater. The duration of the heating phase was 250 days and that of the cooling phase was 180 days. The heater surface was maintained at 100°C during the heating phase. A number of sensors were installed in both the buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of T-H-M phenomena in the near field.  相似文献   

6.
The coupled thermo-hydro-mechanical and chemical (THMC) processes of stress/deformation, fluid flow, temperature and geochemical reactions of the geological media, namely fractured rocks and soils, play an important role in design, construction,operation and environmental impact assessments of rock and soil engineering works such as underground nuclear waste repositories,oil/gas production and storage, geothermal energy extraction, landslides and slope stability, hydropower and water conservancy complexes, etc. This paper presents an overview of the international and Chinese experiences in numerical modeling of the coupled THMC processes for both the state-of-the-knowledge, remaining challenges and vossible future vrosvects.  相似文献   

7.
 建立一种饱和–非饱和遍有节理岩体的双重孔隙–裂隙介质热–水–应力耦合模型,其特点是应力场和温度场是单一的,但具有不同的孔隙渗流场和裂隙渗流场,以及可考虑裂隙的组数、间距、方向、连通率和刚度对本构关系的影响,并研制出相应的二维有限元程序。针对一个假定的高放废物地质处置库,就岩体为双重介质和单重介质2种工况进行数值分析,考察缓冲层和岩体中的温度、孔隙水压力、饱和度、地下水流速和主应力的变化、分布情况。结果显示,地下水由双重介质进入缓冲层中要快得多,2种工况的计算域中温度差别不大,但缓冲层及附近部位的主应力大小及分布有显著不同,单重介质的应力集中程度要大。  相似文献   

8.
As part of a multi-laboratory team, we are carrying out two in situ thermal tests — the single Heater Test and Drift Scale Test, in an underground facility at Yucca Mountain, Nevada, USA, the proposed site for a high-level nuclear waste repository. Our objective in these tests is to gain a more in-depth understanding of the coupled thermal–hydrological–mechanical–chemical processes likely to exist in the fractured rock mass around a geological repository. These coupled processes are monitored continuously by numerous sensors emplaced in boreholes, while cross-hole radar tomography, neutron logging, electrical resistivity tomography, and interference air-permeability tests all serve to measure moisture change in the rock mass. Thermal–hydrological processes for both tests have been simulated (using a 3-D numerical model) and compared to the extensive data set.In this paper, we present examples to illustrate how an iterative approach requiring close integration of modeling and measurements enables us to track the complex coupled processes we seek to understand. The main manifestation of coupled thermal-hydrological processes is in the time evolution of the drying and condensation zones. Good agreement exists between model predictions and measurements, specifically the decrease in air-permeability values within zones of increased liquid saturation in the fractures and the increase of radar velocity in cross-hole radar survey in zones of decreased matrix liquid saturation. A heat-pipe signature in the temperature data arising from liquid–vapor counter-flow occurs in both the measurements and simulated results. The good agreement between predictions from the numerical simulations and measurements in the thermal tests indicates that our basic understanding of the thermal-hydrological processes in a potential repository at Yucca Mountain is sound. However, detailed behavior is impacted by site-specific heterogeneity, in the form of discrete fractures that are not likely to be predictable a priori. One emphasis of the on-going Drift Scale Test is to build on the present understanding and to assess the impact of heterogeneity to the repository performance.  相似文献   

9.
As a part of the international DECOVALEX III project, and the European BENCHPAR project, the impact of thermal–hydrological–mechanical (THM) couplings on the performance of a bentonite-back-filled nuclear waste repository in near-field crystalline rocks is evaluated in a Bench-Mark Test problem (BMT1) and the results are presented in a series of three companion papers in this issue. This is the third paper with focuses on the effects of THM processes at a repository located in a sparsely fractured rock. Several independent coupled THM analyses presented in this paper show that THM couplings have the most significant impact on the mechanical stress evolution, which is important for repository design, construction and post-closure monitoring considerations. The results show that the stress evolution in the bentonite-back-filled excavations and the surrounding rock depends on the post-closure evolution of both fields of temperature and fluid pressure. It is further shown that the time required to full resaturation may play an important role for the mechanical integrity of the repository drifts. In this sense, the presence of hydraulically conducting fractures in the near-field rock might actually improve the mechanical performance of the repository. Hydraulically conducting fractures in the near-field rocks enhances the water supply to the buffers/back-fills, which promotes a more timely process of resaturation and development of swelling pressures in the back-fill, thus provides timely confining stress and support to the rock walls. In one particular case simulated in this study, it was shown that failure in the drift walls could be prevented if the compressive stresses in back-fill were fully developed within 50 yr, which is when thermally induced rock strain begins to create high differential (failure-prone) stresses in the near-field rocks.  相似文献   

10.
为了解黏土岩在放射性废料长期贮存中的热-水-力耦合过程,结合MontTerri核废料贮存地下岩石试验工程中黏土岩各种物理量的各向异性特点,应用多孔介质力学耦合理论研究了该黏土岩在加热和冷却全过程中由于热荷载引起的耦合效应场。研究过程考虑温度升高引起的孔隙水黏滞性改变对渗透系数的影响。研究结果表明,岩体力学参数、水力学参数和热传导参数的各向异性特性是影响岩体的温度场、孔隙压力场和应力场分布的最主要因素。各向异性耦合模型与各向同性耦合模型的数值模拟对比研究结果表明:各向异性模型数值结果能更加客观地反映该地下岩石试验工程中黏土岩在受热状态下的热-水-力耦合效应;同时,也表明岩体在加热过程中一直处于受压状态,而在冷却过程中局部会出现拉应力,从而有可能导致拉裂缝的产生。  相似文献   

11.
The coupled thermo-hydro-mechanical and chemical (THMC) processes of stress/deformation, fluid flow, temperatureand geochemical reactions of the geological media, namely fractured rocks and soils, play an important role in design, construction,operation and environmental impact assessments of rock and soil engineering works such as underground nuclear waste repositories,oil/gas production and storage, geothermal energy extraction, landslides and slope stability, hydropower and water conservancycomplexes, etc. This paper presents an overview of the international and Chinese experiences in numerical modeling of the coupledTHMC processes for both the state-of-the-knowledge, remaining challenges and possible future prospects.  相似文献   

12.
从建立应力平衡方程、水连续性方程、能量守恒方程和弹塑性矩阵入手,提出了一个饱和-非饱和孔隙介质中的热-水-应力耦合模型和开发了相应的有限元程序.为验证本耦合模型及程序的可靠性和重点探讨不同场的热-水-应力耦合过程,以高放射性核废料地质处置的Prototype Repository Project(PRP)原位试验为模拟对象,对一个处置试验坑道近场进行了水单场、热-水耦合、水-应力耦合、热-应力耦合和热-水-应力耦合条件下的数值分析,考察了工程屏障及围岩中的温度、饱和度及应力的变化、分布情况,并得出了一定的认识.  相似文献   

13.
In Belgium,the Boom clay was selected as a potential host formation for the disposal of high-level radioactive waste(HLW).To demonstrate the suitability of Boom clay for bearing thermal load induced by the HLW,a large-scale in-situ heater test,called PRACLAY heater test,will be conducted in the underground research laboratory(URL) in Mol.Owing to the limitations of the test(a short period of time compared with that considered in a real repository,different boundary conditions,etc.),the test is designed to simulate,in a conservative way,the most critical state and phenomena that could occur in the host rock.The PRACLAY gallery was excavated at the end of 2007;the heating phase will begin in 2010 and will last for at least 10 years.The PRACLAY gallery itself leaves an opportunity to study the possibilities of sealing a disposal drift in Boom clay and testing the feasibility of hydraulic cut-off of any preferential pathway to the main access gallery through the excavation damage zone(EDZ) and the lining with a seal in a horizontal drift(horizontal seal).Indeed,this is a generic problem for all deep geological disposal facilities for HLW.An annular seal made of compacted swelling bentonite will be installed in the front of the heated part of the PRACLAY gallery for these purposes.This paper provides detailed considerations on the thermo-hydro-mechanical(THM) boundary conditions for the design of the PRACLAY heater test and the seal test with the support of numerical calculations.It is believed that these important items considered in the PRACLAY heater test design also constitute key issues for the repository design.The outcome of the PRACLAY heater test will be an important milestone for the Belgian repository design.  相似文献   

14.
The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under relevant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 °C to 90 °C. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10?19 to 10?21 m2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.  相似文献   

15.
高放废物深地质处置采用多重屏障设计体系,缓冲材料是位于废物罐和围岩之间的一道重要的人工屏障。在放射性衰变热、地下水入侵和围岩应力等作用下,缓冲材料经历复杂的热-水-力耦合过程,评价其长期性能对高放废物地质处置库的稳定运行至关重要。缓冲材料模型试验是研究膨润土在多场耦合环境下性能变化的重要途径。中型实验台架是大型实验台架(China-Mock-up)的重要补充,用来模拟与大型实验台架边界相同的环境下,即热量和水分别从缓冲材料的不同侧向另一侧传递和渗透的条件下膨润土的行为特征。通过实时监测缓冲材料在长期加热和加水条件下的温度、相对湿度、力学等特征参数,揭示了在热-水-力耦合条件下缓冲材料的性能变化规律,同时对台架进行了拆解,对拆解样品的含水量、干密度和微观结构等进行了分析测试,研究结果可为高放废物处置库缓冲材料的工程设计提供参数支持。  相似文献   

16.
Clays in radioactive waste disposal   总被引:4,自引:0,他引:4  
Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth.The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept.In relation to these concepts,various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth.After introducing the concepts of waste isolation developed in Belgium,France and Switzerland,the paper describes the retention and transfer properties of engineered barriers made up of compacted swelling clays in relation to microstructure features.Some features of the thermo-mechanical behaviors of three possible geological barriers,namely Boom clay(Belgium),Callovo-Oxfordian clay(France) and Opalinus clay(Switzerland),are then described,including the retention and transfer properties,volume change behavior,shear strength and thermal aspects.  相似文献   

17.
An evaluation of the importance of the thermo-hydro-mechanical couplings (THM) on the performance assessment of a deep underground radioactive waste repository has been made as a part of the international DECOVALEX III project. It is a numerical study that simulates a generic repository configuration in the near field in a continuous and homogeneous hard rock. A periodic repository configuration comprises a single vertical borehole, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery. The thermo-hydro-mechanical evolution of the whole configuration is simulated over a period of 100 years. The importance of the rock mass's intrinsic permeability has been investigated through scoping calculations with three values: 10−17, 10−18 and 10−19 m2. Comparison of the results predicted by fully coupled THM analysis as well as partially coupled TH, TM and HM analyses, in terms of several predefined indicators of importance for performance assessment, enables us to identify the effects of the different combinations of couplings, which play a crucial role with respect to safety issues. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable.  相似文献   

18.
A large-scale underground thermal test (Drift Scale Test–DST) in fractured volcanic tuff resulted in changes to water and gas chemistry as well as mineral precipitation and dissolution in fractures. Thermal, hydrological, and chemical (THC) processes in the DST were modeled by Lawrence Berkeley National Laboratory “LBNL” and Japan Nuclear Cycle Development Institute “JNC” as part of the international working group DECOVALEX. Predictions of THC processes in the DST for the 4-year heating and 4-year cooling periods were initially performed by the LBNL group, with the current model reflecting a revised heater operation history and model. JNC used primarily the original data from the prediction and created a new model to evaluate a selected set of data. The approaches taken by the groups differed in several ways and a comparison of the methodologies and results of the simulations allow for a better understanding of modeling coupled processes in unsaturated fractured rock. The LBNL model represented the fractures and rock matrix as a fully interacting dual-continuum (in terms of fluid, heat, and chemical transport) with the local mineral–water–gas reactions treated by kinetic and equilibrium reactions. The JNC model represented the fractures and matrix as a single effective continuum, with equilibrium mineral-water reactions controlling the chemical evolution. Both models considered aqueous species transport, with gas phase CO2 transport only considered in the LBNL model. Comparisons to data collected from the DST illustrate the behavior of the models and their ability to capture the relevant THC processes. Overall, both models capture the temperature evolution in the rock quite closely, although the JNC model gave a closer match to the initial temperature rise in the rock, likely owing to the use of site-specific thermal data as opposed to average properties used for the LBNL model. Both models showed the contrasting solubility effects of increasing temperature on calcite and silica solubility; yet the dual-continuum approach better represented the effects of boiling and condensation on aqueous species chemistry and the distribution of mineral precipitation.  相似文献   

19.
This paper presents the methodology in which two computer codes—TOUGH2 and FLAC3D—are linked and jointly executed for coupled thermal–hydrologic–mechanical (THM) analysis of multiphase fluid flow, heat transfer, and deformation in fractured and porous rock. TOUGH2 is a well-established code for geohydrological analysis with multiphase, multicomponent fluid flow and heat transport, while FLAC3D is a widely used commercial code that is designed for rock and soil mechanics with thermomechanical and hydromechanical interactions. In this study, the codes are sequentially executed and linked through external coupling modules: one that dictates changes in effective stress as a function of multi-phase pore pressure and thermal expansion, and one that corrects porosity, permeability, and capillary pressure for changes in stress. The capability of a linked TOUGH-FLAC simulator is demonstrated on two complex coupled problems related to injection and storage of carbon dioxide in aquifers and to disposal of nuclear waste in unsaturated fractured porous media.  相似文献   

20.
The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi(GMZ) bentonite under coupled thermo-hydro-mechanical(THM) conditions in deep geological disposal.A numerical study of the test is conducted in this paper.The principal THM characteristics of the bentonite are presented at first.A THM model is then presented to tackle the complex coupling behavior of the bentonite.The model of Alonso-Gens is incorporated to reproduce the mechanical behavior of the bentonite under unsaturated conditions.With the proposed model,numerical simulations of the China-mock-up test are carried out by using the code of LAGAMINE.The time variations associated with the temperature,degree of saturation,suction and swelling pressure of the compacted bentonite are studied.The results suggest that the proposed model is able to reproduce the mechanical behavior of the bentonite,and to predict moisture motion under coupled THM conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号