共查询到20条相似文献,搜索用时 15 毫秒
1.
S Waddington HT Cook D Reaveley A Jansen V Cattell 《Canadian Metallurgical Quarterly》1996,49(4):1090-1096
Nitric oxide (NO) synthesis is induced in glomeruli in glomerulonephritis; its role in the pathogenesis of glomerular injury is unknown. Interpretation of its role using the currently available analogues of L-arginine as in vivo inhibitors of NO is complicated by their lack of specificity for inducible NO synthase (iNOS). As NO synthesis by iNOS depends on extracellular L-arginine, we have here examined effects of L-arginine depletion on glomerular NO synthesis and the course of accelerated nephrotoxic nephritis (NTN). Arginase, which converts L-arginine to urea and L-ornithine, was used to achieve L-arginine depletion. A single dose of i.v. arginase produced complete depletion of plasma arginine for four hours. Two forms of NTN were induced in preimmunised rats by nephrotoxic globulin: (1) the systemic form of the model by intravenous nephrotoxic globulin; or (2) the unilateral form of model by left kidney perfusion with nephrotoxic globulin, which avoids the complications of systemic administration of nephrotoxic globulin. Arginase reduced plasma arginine levels and the synthesis of nitrite (the stable end-product of NO) by NTN glomeruli (95% inhibition). Proteinuria was exacerbated. There was no effect on early (24 hr) leukocyte infiltration. In the systemic form of the model arginine depletion by i.v. arginase increased glomerular thrombosis at 24 hours, and the severity of histological changes at four days, accompanied by systemic hypertension. In the unilateral form of the model, where i.v. arginase did not induce hypertension, there was no increase in thrombosis or histological severity of nephritis. These results show that arginine depletion, which inhibits glomerular NO synthesis in NTN, leads to increased proteinuria. Where injury is severe, or accompanied by systemic hypertension, the disease is further exacerbated by glomerular thrombosis. These results suggest that NO has an important role in limiting acute glomerular injury. 相似文献
2.
The role of nitric oxide (NO) in lung injury remains unclear. Both beneficial and detrimental roles have been proposed. In this study, we used mutant mice lacking the inducible nitric oxide synthase (iNOS) to assess the role of this isoform in sepsis-associated lung injury. Wild-type and iNOS knockout mice were injected with either saline or Escherichia coli endotoxin (LPS) 25 mg/kg and killed 6, 12, and 24 h later. Lung injury was evaluated by measuring lactate dehydrogenase activity in the bronchoalveolar lavage, pulmonary wet/dry ratio, and immunostaining for nitrotyrosine formation. In the wild-type mice, LPS injection elicited more than a 3-fold rise in lactate dehydrogenase activity, a significant rise in lung wet/dry ratio and extensive nitrotyrosine staining in large airway and alveolar epithelium, macrophages, and pulmonary vascular cells. This was accompanied by induction of iNOS protein and increased lung nitric oxide synthase activity. By comparison, LPS injection in iNOS knockout mice elicited no iNOS induction and no significant changes in lung NOS activity, lactate dehydrogenase activity, lung wet/dry ratio, or pulmonary nitrotyrosine staining. These results indicate that mice deficient in iNOS gene are more resistant to LPS-induced acute lung injury than are wild-type mice. 相似文献
3.
4.
Peroxynitrite, a potent cytotoxic oxidant formed by the reaction of nitric oxide with superoxide anion, is an important mediator of reperfusion injury. In a rodent model of mesenteric ischemia and reperfusion injury we evaluated the contribution of the constitutive and/or inducible nitric oxide synthase (cNOS or iNOS) in the formation of peroxynitrite. Splanchnic artery occlusion (SAO) shock was induced in rats by clamping both the superior mesenteric artery and the celiac trunk for 45 min, followed by release of the clamps (reperfusion). A significant peroxynitrite production was found in the plasma of the splanchnic occlusion shocked rats at 60 minutes after reperfusion. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine, a specific "footprint" of peroxynitrite, in the necrotic ileum and the aorta of shocked rats. No change in plasma levels of nitrate/nitrite, tissue iNOS expression (by western blotting detection) or iNOS activity was found in the intestine at 60 minutes after reperfusion. On the contrary, activity of the cNOS was reduced (approximately 50%) in the reperfused ischemic intestinal tissue. Treatment with NG-nitro-L-arginine methyl ester, a non selective inhibitor of nitric oxide synthase (given at 3 mg/kg i.v., 5 min prior to reperfusion), significantly reduced plasma level of peroxynitrite and the immunohistochemical staining for nitrotyrosine in the ileum and aorta. Our results suggest that during splanchnic artery occlusion shock peroxynitrite formation is likely to be correlated with nitric oxide production from constitutive nitric oxide synthase activation rather than from the inducible isoform enzyme. 相似文献
5.
PE Di Cesare CS Carlson M Attur AA Kale SB Abramson C Della Valle G Steiner AR Amin 《Canadian Metallurgical Quarterly》1998,16(6):667-674
Phospholipids are the major constituents of cell membranes, and have numerous structural and functional roles in the nervous system. Although the metabolic pathways responsible for the syntheses of the phosphatides phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and phosphatidylserine (PtdSer) are well understood, the mechanisms controlling these pathways in neural tissue have not been fully characterized. Recent studies have suggested that the main factors controlling PtdCho and PtdEtn synthesis by the Kennedy cycle tend to be the intracellular levels of key substrates for the biosynthetic enzymes, or changes in the activities of the rate-limiting enzymes. Moreover, different control mechanisms may operate, depending upon the functional state of the tissue. 相似文献
6.
In a rat model of glomerular immune injury induced by administration of anti-glomerular basement membrane antibody and resembling human rapidly progressive glomerulonephritis, we explored whether activation of inducible nitric oxide synthase (iNOS) regulates synthesis of eicosanoids originating from cyclooxygenation or lipoxygenation of arachidonic acid. At early stages (24 hr) of injury, inhibition of iNOS using the selective inhibitor L-N6-(1-iminoethyl) lysine (L-NIL) at doses sufficient to reduce urinary excretion of nitrate/nitrite, reduced glomerular synthesis of the prostaglandins PGE2 and PGI2, but had no effect on that of thromboxane A2 (TxA2). The syntheses of 5-hydroxyeicosatetraenoic acid (HETE), 15-HETE and leukotriene B4 (LTB4) were also reduced. That of 12-HETE remained unchanged. We also explored the effect of arachidonate cyclooxygenation and lipoxygenation eicosanoids on iNOS expression. Administration of the cyclooxygenase (COX) inhibitor, indomethacin, at doses sufficient to inhibit glomerular prostaglandin synthesis, increased iNOS mRNA levels in glomeruli. Administration of the 5-lipoxygenase (5-LO) inhibitor, MK-0591, at doses sufficient to inhibit glomerular LTB4 synthesis also increased iNOS mRNA. The effect of 5-LO inhibition on iNOS expression was more pronounced than that of COX inhibition. In nephritic animals given the iNOS inhibitor, L-NIL, or indomethacin proteinuria worsened. In those given the 5-lipoxygenase inhibitor there was no change in urine protein excretion. These observations point to regulatory interactions between the arachidonic acid and the L-arginine: NO pathways in glomerulonephritis. These interactions are of importance in considering antiinflammatory strategies based on inhibition of iNOS or of specific eicosanoids. 相似文献
7.
Lipopolysaccharide is known to stimulate production of nitrite via expression of inducible nitric oxide (NO) synthase in not only macrophages but also glial cells. We found that in glial cell cultures lipopolysaccharide-stimulated inducible NO synthase expression and nitrite accumulation were synergistically enhanced by pretreatment with endothelin, whereas endothelin itself did not induce these responses. Pretreatment with endothelin-1, endothelin-3, and the selective endothelin type B (ETB) receptor agonist IRL 1620 caused the same effect with similar potencies, suggesting that the synergism was mediated via the endothelin ETB receptor. A protein kinase C inhibitor, calphostin C, suppressed endothelin-3-enhanced inducible NO synthase expression. Pretreatment with either endothelin-3 or phorbol ester enhanced lipopolysaccharide-induced production of tumor necrosis factor-alpha (TNF-alpha). Simultaneous addition of TNF-alpha increased lipopolysaccharide-stimulated inducible NO synthase expression. These results suggest that the increase in inducible NO synthase expression by endothelin was due to the elevated TNF-alpha production via protein kinase C. Our findings present the possibility that endothelin is implicated in neurotoxicity via enhancement of inducible NO synthase expression. 相似文献
8.
S Nogawa C Forster F Zhang M Nagayama ME Ross C Iadecola 《Canadian Metallurgical Quarterly》1998,95(18):10966-10971
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 micrometer) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation. 相似文献
9.
N Uhlenius I Tikkanen T Tikkanen A Miettinen T T?rnroth F Fyhrquist 《Canadian Metallurgical Quarterly》1996,74(1):144-149
Effects of nitric oxide (NO) synthase inhibition on blood pressure and on the course of Heymann nephritis was examined in rats. L-NG-nitroarginine-methylester (L-NAME, 10 mg/100 ml in the drinking water for 12 weeks) was used as an inhibitor of NO synthase. Urinary excretion of guanosine 3',5'-cyclic monophosphate (cGMP), a second messenger of NO, was used as an indirect estimate of NO activity. Rats were divided into the following groups: control, nephritis, L-NAME, and nephritis-L-NAME. Urinary cGMP excretion was lower in the nephritis group (p < 0.05) and in the nephritis-L-NAME group (p < 0.005) compared with controls. Plasma atrial natriuretic peptide (ANP) levels were elevated in the nephritis (p < 0.001) and in the nephritis-L-NAME groups (p < 0.05. L-NAME treatment alone did not have any effect on plasma ANP levels. Blood pressure rose progressively in all L-NAME-treated rats. Most marked albuminuria developed in the nephritis-L-NAME group. No differences in the immunohistological findings were observed between the nephritis and the nephritis-L-NAME groups. NO synthase inhibition causes hypertension and aggravates albuminuria in chronic nephritis. Moreover, nephritis itself may decrease then production of cGMP either as a consequence of blunted NO activity or, in addition, because of ANP resistance. It appears that NO synthase inhibition does not change the immunological course of Heymann nephritis but rather the increased hemodynamic load makes the course of nephritis worse. 相似文献
10.
V Cattell J Smith A Jansen V Riveros-Moreno S Moncada 《Canadian Metallurgical Quarterly》1994,58(12):1399-1402
There is increasing evidence for a role for nitric oxide (NO) in the alloimmune response and induction of NO synthesis occurs during allograft rejection. The aim of this study was to investigate the source of NO synthesis in rejecting allografts. Localization of inducible nitric oxide synthase (iNOS) was studied by immunohistochemistry, in a rat model of acute renal allograft rejection, in unmodified Lewis recipients in which rejection is complete 7 days after transplantation of F1 hybrid Lewis-Brown Norway kidneys. High levels of iNOS expression were found in infiltrating mononuclear cells in glomeruli and interstitium of rejecting kidneys; there was no expression in parenchymal renal cells, or in control isografts of either rat strain. Expression of iNOS in the cortex was present from 4 to 6 days posttransplantation, and had declined by the 7th day, where expression was principally in the medulla. The pattern of iNOS staining was similar to ED1 staining, a marker for rat macrophages. These findings suggest that infiltrating macrophages in the graft reaction are a prominent source of NO; this iNOS expression supports a role for NO in the modulation of local allogeneic responses, and possibly as a mediator of cytotoxic graft damage. 相似文献
11.
12.
JU Igietseme LL Perry GA Ananaba IM Uriri OO Ojior SN Kumar HD Caldwell 《Canadian Metallurgical Quarterly》1998,66(4):1282-1286
Type 1 CD4+-T-cell-mediated immunity is crucial for the resolution of chlamydial infection of the murine female genital tract. Previous studies demonstrating a correlation between CD4+-T-cell-mediated inhibition of chlamydial growth and gamma interferon (IFN-gamma)-mediated induction of nitric oxide synthase suggested a potential role for the nitric oxide (NO) effector pathway in the clearance of Chlamydia from genital epithelial cells by the immune system. To clarify the role of this pathway, the growth levels of Chlamydia trachomatis organisms in normal (iNOS+/+) mice and in genetically engineered mice lacking the inducible nitric oxide synthase (iNOS) gene (iNOS-/- mice) were compared. There was no significant difference in the course of genital chlamydial infections in iNOS+/+ and iNOS-/- mice as determined by recovery of Chlamydia organisms shed from genital epithelial cells. Dissemination of Chlamydia to the spleen and lungs occurred to a greater extent in iNOS-/- than in iNOS+/+ mice, which correlated with a marginal increase in the susceptibility of macrophages from iNOS-/- mice to chlamydial infection in vitro. However, infections were rapidly cleared from all affected tissues, with no clinical signs of disease. The finding of minimal dissemination in iNOS-/- mice suggested that activation of the iNOS effector pathway was not the primary target of IFN-gamma during CD4+-T-cell-mediated control of chlamydial growth in macrophages because previous reports demonstrated extensive and often fatal dissemination of Chlamydia in mice lacking IFN-gamma. In summary, these results indicate that the iNOS effector pathway is not required for elimination of Chlamydia from epithelial cells lining the female genital tract of mice although it may contribute to the control of dissemination of C. trachomatis by infected macrophages. 相似文献
13.
G Losonczy JF Bloch L Samsell M Schoenl R Venuto C Baylis 《Canadian Metallurgical Quarterly》1997,51(6):1943-1949
We investigated the effect of euvolemic surgical preparation, on chemical indices of activity of the nitric oxide (NO) system, in anesthetized, acutely prepared rats. The urinary excretion of NO2+NO3 (UNOXV) and cGMP (UcGMPV) increased progressively during the experiment. Pretreatment with aminoguanidine or dexamethasone, inhibitors of inducible NO synthase (iNOS), prevented the increase in UNOXV and UcGMPV but had no impact on mean arterial pressure (BP), renal vascular resistance (RVR) or GFR. Since these variables did not change in the conscious rat, the increased UNOXV results from some aspect of the acute surgical preparation. When acutely prepared rats received L-NAME, a non-specific NOS inhibitor, BP and RVR increased but paradoxical increases in UNOXV and UcGMPV were also seen. Nonselective NOS inhibition (+L-NAME) was fatal in 50% of acutely prepared rats, causing cardiac contracture. The same dose of L-NAME produced no deaths in either conscious chronically catheterized rats or in acutely prepared rats, previously subjected to sterile surgery and acute L-NAME in the conscious state. These data indicate that acute, nonsterile surgery induces expression of iNOS, but that the additional NO generated has no obvious cardiovascular/renal actions. Acute UNOXV and UcGMPV do not predict total NO production, or "hemodynamically active" NO. Generalized NO inhibition in rats acutely stressed by surgery/anesthesia can be fatal. 相似文献
14.
A water-soluble synthetic peptide with only nine amino acid residues, comprising the 131-139 sequence region of the cytotoxic protein alpha-sarcin (secreted by the mold Aspergillus giganteus), interacts with large unilamellar vesicles composed of acid phospholipids. It promotes lipid mixing between bilayers and leakage of vesicle aqueous contents, and it also abolishes the phospholipid phase transition. Other larger peptides containing such an amino acid sequence also produce these effects. These peptides acquire alpha-helical conformation in the presence of trifluoroethanol, but display beta-strand conformation in the presence of sodium dodecyl sulfate. The interaction of these peptides with the lipid vesicles also results in beta-structure. The obtained data are discussed in terms of the involvement of the 131-139 stretch of alpha-sarcin in its interaction with lipid membranes. 相似文献
15.
A Furusu M Miyazaki K Abe S Tsukasaki K Shioshita O Sasaki K Miyazaki Y Ozono T Koji T Harada H Sakai S Kohno 《Canadian Metallurgical Quarterly》1998,53(6):1760-1768
The presence of nitric oxide (NO) in the kidney has been implicated in the pathogenesis of human glomerulonephritis. However, the exact type of glomerular cells that express NO synthase (NOS) and the NOS isoform involved in the local production of NO has not been identified in the human diseased kidney. We examined the expression of three isoforms of NOS, inducible NOS (iNOS), endothelial NOS (eNOS) and brain NOS (bNOS) in the renal tissue of patients with IgA nephropathy (IgAN, N = 10), lupus nephritis (LN, N = 5), membranous nephropathy (MN, N = 5) and minimal change nephrotic syndrome (MCNS, N = 5). Sections were immunostained and the correlation between the expression of each NOS and the degree of glomerular injury in that section was also examined. Normal portions of surgically resected kidneys served as controls. eNOS was present in glomerular endothelial cells and endothelium of cortical vessels in the control and diseased kidneys. iNOS was localized in mesangial cells, glomerular epithelial cells and infiltrating cells in the diseased glomeruli, whereas immunostaining for iNOS was hardly detected in control kidneys. In addition, the expression pattern of eNOS in each glomerulus was the reverse of that of iNOS. In IgAN and LN, the extent of staining for eNOS correlated negatively with the degree of glomerular injury, while the extent of staining for iNOS correlated positively with the degree of glomerular injury in the same tissues. bNOS was not detected in normal or nephritic glomeruli. Our results indicate the presence of a NO pathway in human diseased kidney, and suggest that NO derived from eNOS and iNOS may be involved in the progression of renal diseases and that NO derived from each NOS may play an important role in different way in human inflamed glomeruli. 相似文献
16.
V Trajkovi? V Badovinac D Popadi? O Hadzi? MM Stojkovi? 《Canadian Metallurgical Quarterly》1997,92(3):402-406
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types. 相似文献
17.
M Takahashi K Fukuda T Ohata T Sugimura K Wakabayashi 《Canadian Metallurgical Quarterly》1997,57(7):1233-1237
Nitric oxide (NO) is an important bioregulatory mediator involved in a variety of biological processes under both physiological and pathological conditions. To assess whether NO production is altered in colon carcinogenesis, the expression levels and localization of two isoforms of NO synthase, inducible NO synthase (iNOS) and endothelial constitutive NO synthase (eNOS), were examined by immunoblot and immunohistochemical methods in normal colonic mucosa and colon carcinomas induced by azoxymethane in male F344 rats. All colon carcinoma tissues examined were found to have an increased expression of iNOS and eNOS proteins as compared to normal colonic mucosa. In particular, the pronounced staining of iNOS protein localized to the luminal surface of carcinoma epithelial cells was not detectable in normal colon epithelium. The neovasculature in tumor tissues also demonstrated intense eNOS immunoreactivity in endothelial cells. These findings indicate that NO production is markedly elevated in azoxymethane-induced rat colon carcinomas, suggesting that regulatory pathways involving this mediator have some biological relevance to colon carcinogenesis in this model. 相似文献
18.
19.
MJ Miller JH Thompson X Liu S Eloby-Childress H Sadowska-Krowicka XJ Zhang DA Clark 《Canadian Metallurgical Quarterly》1996,45(6):272-276
We addressed the hypothesis that administration of nitric oxide synthase inhibitor, NG -nitro-L-arginine methyl ester (L-NAME) does not result in a sustained suppression of nitric oxide (NO) synthesis, because of a compensatory expression of inducible nitric oxide synthase (iNOS). L-NAME was administered in the drinking water (0.1-1.0 mg/ml) for 7 days to guinea pigs and rats. Nitric oxide synthesis was assessed by [1] ex vivo formation of nitrite in blood vessels and intestine [2] tissue levels of cGMP [3] iNOS gene expression by RT-PCR [4] NADPH diaphorase staining [5] direct assessment of NO release in tissue explants using a microelectrode/electrochemical detection system. Chronic L-NAME administration elevated intestinal cGMP and nitrite levels in guinea pigs (p < 0.05). In rats, intestinal nitrite levels were comparable in control and L-NAME treatment groups, whereas direct assessment of NO release defined a marked increase in the L-NAME group. Chronic L-NAME resulted in an induction of iNOS gene expression in rats and guinea pigs and novel sites of NADPH diaphorase staining in the intestine. We conclude that iNOS expression is responsible for a compensatory increase or normalization of NO synthesis during sustained administration of L-NAME. 相似文献
20.
RB Stevens DE Sutherland JD Ansite M Saxena TJ Rossini BK Levay-Young BJ Hering CD Mills 《Canadian Metallurgical Quarterly》1997,159(11):5329-5335
Evidence in this paper indicates that insulin can down-regulate the inducible nitric oxide synthase (iNOS) pathway in vivo. The iNOS pathway is up-regulated in diabetes-prone rats and mice and is associated with an autoimmune process. However, the results presented here indicate that macrophage nitric oxide (NO) production and iNOS mRNA expression are also elevated in rats or mice made diabetic by streptozotocin injection in which there is no primary autoimmune component. Insulin administration reduces NO production in autoimmune-prone and streptozotocin-induced diabetic rodents. Finally, insulin decreases macrophage NO production in normal hosts. These results indicate that the autoimmune paradigm is inadequate to explain increased NO in diabetes. As a potential mechanism to explain insulin-mediated regulation of NO production, TGF-1 may be involved because 1) macrophages from diabetic mice produce less TGF-beta1 than macrophages from normal hosts; 2) the circulating TGF-beta1 level is lower in diabetic mice; and 3) insulin administration increases circulating TGF-beta1 in normal mice. Together, these results provide evidence that increased NO in diabetes is not only a cause but also an effect of beta-cell destruction and results in part from a heretofore unrecognized immunomodulatory activity of insulin. 相似文献