共查询到19条相似文献,搜索用时 46 毫秒
1.
模糊聚类在机械故障诊断中的应用 总被引:3,自引:0,他引:3
介绍了模糊C均值聚类算法在机械故障诊断中的应用.以滚动轴承故障特征值的聚类中心来评定故障类别收到了良好的效果.与其他方法相比,模糊聚类方法实现只需要少量样本,从而使诊断工作量与诊断时间大为减少. 相似文献
2.
研究半监督学习的模糊核聚类方法用于变速箱早期故障诊断的方法。故障特征不明显、样本差异小是机械故障早期检测的难点,基于半监督学习的核聚类方法利用少量已知模式的样本,结合大量未知模式的样本进行半监督学习,得到较好的识别效果。进行了变速箱正常运行和齿轮轻微剥落的故障实验,比较基于半监督学习的核聚类方法与无监督学习核聚类方法。实验结果表明,基于半监督学习的核聚类方法性能更优越。 相似文献
3.
4.
提出基于柱子群优化模糊聚类分析的算法,并将其用于旋转机械的振动故障诊断。该算法以模糊C一均值算法(FCM)的聚类目标函数作为粒子群的适应度函数来衡量各聚类中心的优劣,并依据聚类有效性指标自动确定最优聚类数及聚类中心,有效的结合了FCM极易陷入局部最优的缺点以及粒子群算法全局寻优的优点。实践表明,该方法提高了旋转机械故障诊断的准确率,既可正确判断单一故障,又可有效诊断复合故障,从而证明了该算法的有效性。 相似文献
5.
6.
针对传统智能诊断方法需要专家知识和复杂特征提取,而深度神经网络模型复杂度高、构建难度大,以及单源信号信息不完备等问题,提出了一种新颖的全矢数据融合增强深度森林的旋转设备故障诊断方法。该方法根据旋转设备振动信号的特点,选择全矢谱技术与深度森林多粒度扫描相结合,用于接收同源双通道信号输入,增强了数据的完备性,并通过改善深度森林级联层来减少深层特征消失和特征冗余。为了验证所提出方法的有效性,分别进行了滚动轴承与轴向柱塞泵两例故障诊断实验研究,结果表明,该方法在不同旋转设备上都有很好的诊断效果,并可以实现端到端故障诊断。此外,该方法在小训练数据集上的故障识别准确率也非常高。 相似文献
7.
刘向阳 《现代制造技术与装备》2009,(5):20-21
本文以模糊理论为基础,根据模糊故障诊断的基本原理,通过建立旋转机械故障诊断数学模型和故障诊断原则,实现对旋转机械的故障诊断,最后通过具体的旋转机械故障诊断实例进行分析说明. 相似文献
8.
针对传统故障诊断方法不能解决旋转机械故障诊断的模糊性问题,提出一种基于模糊Kohonen神经网络的故障诊断模型,通过模糊量化处理故障样本模式和在Kohonen网络中使用邻域函数自动调整权重程度的改进学习算法,较大提高了网络的学习速度和聚类能力,能对具有模糊性的复合故障进行诊断,是一种适合于复杂旋转机械故障诊断的有效可行的方法。 相似文献
9.
10.
基于半监督模糊核聚类的齿轮箱离群检测方法 总被引:2,自引:0,他引:2
研究核聚类方法在机械故障检测中的应用问题,将基于半监督学习的模糊核聚类方法用于齿轮箱离群故障的检测。机械故障早期检测的难点是故障特征微弱、样本差异小,基于半监督学习的核聚类方法利用少量已知模式的样本,结合大量未知模式的样本进行半监督学习,得到较好的识别效果。进行齿轮箱正常运行和齿轮轻微点蚀的故障试验,比较基于半监督学习的核聚类方法与无监督学习核聚类方法的检测效果。试验结果表明,基于半监督学习的核聚类方法性能更优越。 相似文献
11.
12.
基于小波包分解和支持向量机的机械故障诊断方法 总被引:12,自引:2,他引:12
提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可以获得更高的诊断精度,表明该方法是有效的、可行的。 相似文献
13.
旋转机械的全信息能量谱分析方法研究 总被引:25,自引:2,他引:25
对旋转机械回转能量谱进行研究。建立回转能量谱的概念,定义两种全矢能量谱,导出全矢能量谱基于复合信号的简洁计算公式,并将其应用于实际故障诊断系统中。实践表明,全矢能量谱作为对转子涡动信号处理的能量分析方法,对于旋转机械故障诊断是非常实用的分析工具。 相似文献
14.
15.
17.
基于遗传算法的旋转机械故障诊断方法融合 总被引:4,自引:0,他引:4
针对任何单一性质故障特征、单一诊断方法难以实现在整个故障状态空间上准确诊断的局限性,提出基于遗传算法的旋转机械融合诊断方法。该方法能有效利用各种不同性质故障特征和不同诊断方法,使其发挥各自的优点,从而提高诊断的准确率。针对不同特征利用遗传算法将神经网络诊断和人工免疫诊断方法融合起来,使每一个诊断方法都在其优势空间区域发挥作用,使用小波包能量特征和双谱特征对两种诊断方法训练后,用遗传算法优化诊断融合权值矩阵对旋转机械进行实例诊断结果表明,该融合诊断方法能有效地提高故障诊断的准确率,并能提高诊断系统的鲁棒性。 相似文献
18.
基于核函数估计的转子故障诊断方法 总被引:7,自引:0,他引:7
研究核函数估计方法(KFA)在机械故障诊断中的应用问题,提出一种基于特征样本选择的转子故障模式分类方法。通过计算转子振动信号原始特征空间的内积核函数,将所有原始特征样本映射到高维特征空间,在高维空间中选择特征样本对转子裂纹、转子不平衡及转子碰摩三种故障模式进行分类识别,选择的特征样本远小于样本集中全体样本的数目,提高了运算速度。比较了KFA分类方法与支持矢量机(SVM)分类方法的效果,结果表明,在保证分类精度的条件下,KFA方法可以明显减少运算量,性能更优越。 相似文献