首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
模糊聚类在机械故障诊断中的应用   总被引:3,自引:0,他引:3  
介绍了模糊C均值聚类算法在机械故障诊断中的应用.以滚动轴承故障特征值的聚类中心来评定故障类别收到了良好的效果.与其他方法相比,模糊聚类方法实现只需要少量样本,从而使诊断工作量与诊断时间大为减少.  相似文献   

2.
研究半监督学习的模糊核聚类方法用于变速箱早期故障诊断的方法。故障特征不明显、样本差异小是机械故障早期检测的难点,基于半监督学习的核聚类方法利用少量已知模式的样本,结合大量未知模式的样本进行半监督学习,得到较好的识别效果。进行了变速箱正常运行和齿轮轻微剥落的故障实验,比较基于半监督学习的核聚类方法与无监督学习核聚类方法。实验结果表明,基于半监督学习的核聚类方法性能更优越。  相似文献   

3.
郑小霞  钱轶群  王帅  赵坤 《机械传动》2020,44(6):142-148
为准确地辨识已知、未知故障类别,提出一种基于模糊核聚类模型的风电齿轮箱故障诊断新方法。首先,将模型初始聚类中心和核参数作为优化变量,采用改进型灰狼优化算法寻优求解。改进型灰狼优化算法中引入莱维飞行策略和非线性收敛向量,能够提高算法的收敛速度与精度,从而获得最佳分类结果下的各聚类中心和核参数;然后,根据待测样本与各聚类中心之间的核空间样本相似度,先判断样本是否属于已知故障,再诊断故障类别;最后,通过模拟风电齿轮箱的故障实验验证了该方法的有效性。  相似文献   

4.
提出基于柱子群优化模糊聚类分析的算法,并将其用于旋转机械的振动故障诊断。该算法以模糊C一均值算法(FCM)的聚类目标函数作为粒子群的适应度函数来衡量各聚类中心的优劣,并依据聚类有效性指标自动确定最优聚类数及聚类中心,有效的结合了FCM极易陷入局部最优的缺点以及粒子群算法全局寻优的优点。实践表明,该方法提高了旋转机械故障诊断的准确率,既可正确判断单一故障,又可有效诊断复合故障,从而证明了该算法的有效性。  相似文献   

5.
全信息小波包分析及其在旋转机械故障诊断中的应用   总被引:1,自引:0,他引:1  
冯彩红  韩捷  李凌均 《机械强度》2006,28(5):639-642
针对传统旋转机械单通道故障诊断的不足,结合设备状态检测和故障诊断中微弱振动信号难以提取的问题,在介绍全信息技术的基础上,提出新的信号处理方法——全信息小波包分析,用小波包变换对双通道信号分别进行分解,以提取信号中的微弱局部成分,把需要的对应小波包进行重构并用全矢谱技术进行融合,根据融合后的数据进行故障诊断。工程应用实践表明,全信息小波包分析是一种新的、较为实用的信号处理方法。  相似文献   

6.
针对传统智能诊断方法需要专家知识和复杂特征提取,而深度神经网络模型复杂度高、构建难度大,以及单源信号信息不完备等问题,提出了一种新颖的全矢数据融合增强深度森林的旋转设备故障诊断方法。该方法根据旋转设备振动信号的特点,选择全矢谱技术与深度森林多粒度扫描相结合,用于接收同源双通道信号输入,增强了数据的完备性,并通过改善深度森林级联层来减少深层特征消失和特征冗余。为了验证所提出方法的有效性,分别进行了滚动轴承与轴向柱塞泵两例故障诊断实验研究,结果表明,该方法在不同旋转设备上都有很好的诊断效果,并可以实现端到端故障诊断。此外,该方法在小训练数据集上的故障识别准确率也非常高。  相似文献   

7.
本文以模糊理论为基础,根据模糊故障诊断的基本原理,通过建立旋转机械故障诊断数学模型和故障诊断原则,实现对旋转机械的故障诊断,最后通过具体的旋转机械故障诊断实例进行分析说明.  相似文献   

8.
针对传统故障诊断方法不能解决旋转机械故障诊断的模糊性问题,提出一种基于模糊Kohonen神经网络的故障诊断模型,通过模糊量化处理故障样本模式和在Kohonen网络中使用邻域函数自动调整权重程度的改进学习算法,较大提高了网络的学习速度和聚类能力,能对具有模糊性的复合故障进行诊断,是一种适合于复杂旋转机械故障诊断的有效可行的方法。  相似文献   

9.
为了诊断风电齿轮箱已知类别和未知类别的故障,提出了基于模糊核聚类和引力搜索的故障诊断方法。首先建立以训练样本分类错误率为目标的聚类模型,利用模糊核聚类对训练样本进行分类;然后利用引力搜索算法求解聚类模型,获得最优分类结果下每个类的类心;最后根据新样本与各类心之间的核空间样本相似度判断属于已知故障或者未知故障。结果表明,该方法准确度高,可有效用于风电齿轮箱故障诊断。  相似文献   

10.
基于半监督模糊核聚类的齿轮箱离群检测方法   总被引:2,自引:0,他引:2  
研究核聚类方法在机械故障检测中的应用问题,将基于半监督学习的模糊核聚类方法用于齿轮箱离群故障的检测。机械故障早期检测的难点是故障特征微弱、样本差异小,基于半监督学习的核聚类方法利用少量已知模式的样本,结合大量未知模式的样本进行半监督学习,得到较好的识别效果。进行齿轮箱正常运行和齿轮轻微点蚀的故障试验,比较基于半监督学习的核聚类方法与无监督学习核聚类方法的检测效果。试验结果表明,基于半监督学习的核聚类方法性能更优越。  相似文献   

11.
《机械强度》2015,(5):806-811
针对基于单源信息的EMD故障诊断的局限性和根据传统全矢谱分析故障的缺点,提出了基于EMD的全矢谱故障特征提取新方法。该方法对采集于同一截面上的互相垂直的两个传感器上的振动信号,运用EMD将其分别分解为若干IMF分量之和。根据IMF频率及其能量特点,通过全矢谱技术融合特定的IMF分量,得到基于EMD的全矢谱,进而进行故障诊断。仿真结果显示,该方法获取的故障特征更全面、准确。某额定功率为3000k W的TRT发电机组轴瓦振动故障诊断结果进一步表明了该方法的可行性和有效性。  相似文献   

12.
基于小波包分解和支持向量机的机械故障诊断方法   总被引:12,自引:2,他引:12  
提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可以获得更高的诊断精度,表明该方法是有效的、可行的。  相似文献   

13.
旋转机械的全信息能量谱分析方法研究   总被引:25,自引:2,他引:25  
韩捷  石来德 《机械强度》2003,25(4):364-368
对旋转机械回转能量谱进行研究。建立回转能量谱的概念,定义两种全矢能量谱,导出全矢能量谱基于复合信号的简洁计算公式,并将其应用于实际故障诊断系统中。实践表明,全矢能量谱作为对转子涡动信号处理的能量分析方法,对于旋转机械故障诊断是非常实用的分析工具。  相似文献   

14.
基于矢谱分析技术的转子系统连续摩擦故障诊断   总被引:1,自引:0,他引:1  
陈宏  韩捷  郝伟  王丽雅 《机械强度》2011,33(2):308-311
应用矢谱分析技术分析在没有键相信号时转子系统的连续摩擦故障,研究结果表明,应用矢谱分析技术不但可以根据副振矢很容易地分析出反向涡动现象,而且能够通过振矢角判断出连续摩擦故障发生的具体位置及摩擦范围,文中的研究结果为转子系统连续摩擦故障的诊断提供一个新的有效手段.  相似文献   

15.
基于模糊聚类的油田往复压缩机气阀故障诊断研究   总被引:8,自引:0,他引:8  
往复压缩机气阀是整个机体中故障率最高的部件,针对其故障模式复杂、难以辨识的特点,选取与气阀运行状态密切相关的6个振动参数作为特征参数,采用模糊聚类方法对气阀故障和运行状态进行评判.用现场实际采集的20个样本进行模糊聚类分析,求出故障特征,并与频谱分析和现场实际情况进行比较,聚类结果与实际情况相吻合,证明此方法应用于运行状态评判和挖掘故障特征是有效的.  相似文献   

16.
17.
基于遗传算法的旋转机械故障诊断方法融合   总被引:4,自引:0,他引:4  
针对任何单一性质故障特征、单一诊断方法难以实现在整个故障状态空间上准确诊断的局限性,提出基于遗传算法的旋转机械融合诊断方法。该方法能有效利用各种不同性质故障特征和不同诊断方法,使其发挥各自的优点,从而提高诊断的准确率。针对不同特征利用遗传算法将神经网络诊断和人工免疫诊断方法融合起来,使每一个诊断方法都在其优势空间区域发挥作用,使用小波包能量特征和双谱特征对两种诊断方法训练后,用遗传算法优化诊断融合权值矩阵对旋转机械进行实例诊断结果表明,该融合诊断方法能有效地提高故障诊断的准确率,并能提高诊断系统的鲁棒性。  相似文献   

18.
基于核函数估计的转子故障诊断方法   总被引:7,自引:0,他引:7  
研究核函数估计方法(KFA)在机械故障诊断中的应用问题,提出一种基于特征样本选择的转子故障模式分类方法。通过计算转子振动信号原始特征空间的内积核函数,将所有原始特征样本映射到高维特征空间,在高维空间中选择特征样本对转子裂纹、转子不平衡及转子碰摩三种故障模式进行分类识别,选择的特征样本远小于样本集中全体样本的数目,提高了运算速度。比较了KFA分类方法与支持矢量机(SVM)分类方法的效果,结果表明,在保证分类精度的条件下,KFA方法可以明显减少运算量,性能更优越。  相似文献   

19.
旋转机械同源数据全信息倒频谱分析与应用   总被引:3,自引:0,他引:3  
韩捷  董辛旻  郝伟  李凌均 《机械强度》2005,27(4):452-455
提出一种基于旋转机械同源数据融合的全信息倒频谱(full information cepstrum,FIC)分析方法。研究旋转机械同源信息融合的转子回转能量谱,并在此基础上研究全信息倒频谱分析方法。成功地将全信息分析理念拓展到频域分析以外的分析领域,将其应用于高速旋转动力齿轮的故障诊断,取得明显的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号