共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
复合轴APT(Acquisition Pointing Tracking)控制子系统是自由空间激光通信系统中重要组成部分和关键技术,其中粗跟踪伺服单元主要完成高概率、快速捕获和高稳定、高精度跟踪。在简要介绍自由空间激光通信粗跟踪光斑检测的基础上,优化设计了APT粗跟踪光斑检测单元。以XILINX公司的Spartan-3E系列XC3S1200E型FPGA芯片为平台,完成了对光斑检测单元CCD相机图像进行模拟高斯分布的自适应滤波的实时处理,并对相机进行自适应光强控制,提高了粗跟踪光斑信号的检测精度。最后经过APT复合轴的实验系统测试得出:粗跟踪精度120μrad,可靠进入精跟踪视场。 相似文献
3.
大气激光通信光斑图像的快速复原与实时检测 总被引:2,自引:0,他引:2
针对大气湍流对激光通信中对信标光的捕获、跟踪与对准(ATP)的影响,提出了基于盲解卷积的快速复原与实时检测算法。采用一维点扩散函数重新构造方位退化模型,取代了原有经典二维退化模型;改进了约束共轭梯度算法中的约束算子,并通过改进的共轭梯度迭代算法求得对原始图像的估计;最后通过连通域计算提取估计结果中的光斑中心位置。采用现场可编程门阵列和数字信号处理器实现所提出的共轭梯度算法并提取光斑中心位置,满足了系统实时性要求。实验表明,所提出的快速复原算法能够实时复原分辨率为200pixel×200piexl,帧频为100Hz的光斑图像,所提取的信标光光斑中心位置与事后计算结果的误差小于1pixel,能够满足激光通信系统对信标光的实时跟踪要求。 相似文献
4.
《机械制造与自动化》2016,(6):159-163
针对弧焊机器人动态特性中的非线性和不确定因素,对机器人的轨迹跟踪控制问题进行了研究。为提高跟踪精度和控制性能,提出一种基于高斯基模糊神经网络的轨迹跟踪控制方法。该方法以高斯基作为隶属函数,结合神经网络和模糊算法,设计了高斯基模糊神经网络控制器。采用非线性规划中的最速下降法对模糊神经网络进行自学习,能够在线调节隶属度函数的中心以及关节耦合权值,使得控制器具有更好的自学习与自适应能力。数值仿真结果表明该控制方法能高效地控制机器人的轨迹跟踪。 相似文献
5.
一种基于位姿反馈的工业机器人定位补偿方法 总被引:1,自引:0,他引:1
为了提高工业机器人的绝对定位精度,提出了一种基于末端位姿闭环反馈的机器人精度补偿方法。该方法通过激光跟踪仪测量实时跟踪机器人末端靶标点的位置来监测机器人末端的位姿,并通过对靶标点的实际位置和理论位置进行匹配获得机器人末端的位姿偏差。工业机器人系统与激光跟踪测量系统通过局域网进行数据通信,并根据位姿偏差数据对机器人末端的位姿进行修正。最后通过实验对基于末端位姿闭环反馈的机器人精度补偿方法进行验证,实验表明,经过位姿闭环反馈补偿后机器人末端位置误差最大幅度可以降低到0.05mm,姿态误差最大幅度可以降低到0.012°。 相似文献
6.
自由空间光通信ATP系统中精瞄偏转镜的设计 总被引:13,自引:9,他引:4
二维精瞄偏转镜是自由空间光通信中捕获、跟踪和瞄准(ATP)系统的关键组成部分,对偏转镜进行了机构设计和有限元模态分析,偏转镜采用压电陶瓷驱动器驱动,采用柔性铰链传动。研制了集驱动、检测、主控模块为一体的数字式精密定位控制器,在实验室构建了两套测试系统,对偏转镜的频率和静态性能进行了测试,并着重介绍了频率的两种测量方法及其优缺点分析。仿真和测试结果表明,偏转镜的频率约为1.5kHz,转角范围约为±2mrad,精度约为1μrad,分辨率约为0.1μrad。 相似文献
7.
8.
9.
为了提高效率,节约成本,该文介绍了一种三菱FX5U PLC与Fanuc机器人进行CC-link通信的方法。通过完成硬件的连接、机器人(从站)通信参数设置、I/O信号分配、PLC(主站)通信参数设置、编写程序建立数据链接等步骤,建立主站与从站之间的通信网络。经测试,主站与从站能建立数据链接,进行网络通信。 相似文献
10.
利用激光跟踪仪对机器人进行标定的方法 总被引:24,自引:3,他引:24
提出一种简单的利用激光跟踪仪和线性方程最小二乘解对机器人进行标定的方法。通过将机器人运动学方程线性化,建立机器人末端凸缘盘位置误差与连杆D-H参数误差的关系方程。利用激光跟踪仪确定机器人的基坐标系,并通过圆周法求解每个关节电动机的直线方程,进而可以求得机器人的连杆扭角。通过激光跟踪仪测量机器人目标点的坐标值,并通过串口获得机器人6根轴的角度值建立标定方程。通过求解此方程,获得机器人的实际D-H参数,并将此参数应用于修正系统的运动学模型,能够提高机器人的绝对精度。最后对解算过程中的误差和原因进行说明,并对机器人的误差原因进行分析,指出标定过程中需要注意和改进的几个问题。 相似文献
11.
12.
在复杂环境的轨迹跟踪过程中,针对移动机器人不确定时延导致控制品质下降问题,提出基于五次贝塞尔(Quintic Bezier)曲线的移动机器人非时间参考轨迹跟踪控制方法。首先,利用Quintic Bezier曲线对规划路径点进行平滑,并根据连续约束进行优化,完成多段Quintic Bezier曲线的光顺拼接,获得平滑且连续的轨迹;而后以Quintic Bezier曲线参数u作为中间映射量,构建路径长度与轨迹坐标间的状态映射模型,设计移动机器人非时间运动参考量;在此基础上,根据移动机器人运动学模型,提出一种奇异点旋转映射技术,消除奇异点对轨迹跟踪控制品质的影响。实验结果说明,所用方法能提高规划路径的平滑性与连续性,增强移动机器人不确定时延跟踪控制的鲁棒性,避免了奇异点的影响。 相似文献
13.
14.
针对传统控制理论在视觉跟踪焊接机器人随动系统中难以取很良好控制效果的问题,提出了基于免疫学的智能控制方法.并运用该方法将随动系统跟踪焊缝所需的转动角度作为免疫抗原,以随动系统的输入电压作为免疫抗体,对焊缝跟踪系统的跟踪性能进行了仿真实验,结果表明该控制方法具有良好的快速性和稳定性,满足随动系统快速旋转跟踪焊缝的要求. 相似文献
15.
16.
17.
针对具有很少甚至没有地标和缺乏良好照明条件的大型液化石油气球形储罐环境下,仅依靠里程计以及惯性测量单元的爬壁机器人定位精度较低,且存在较为明显的累积误差的问题,提出了一种新的解决方案,通过跟踪球形储罐表面焊缝相对于机器人的运动来改善机器人定位精度。首先,通过配备辅助光源,利用安装在机器人两侧的CCD相机进行图像采集,并实时对图像进行二值化处理,识别出焊缝特征区域并输出相应的检测信号,通过相邻时刻检测信号增量计算来估计机器人的相对位置;接着,提出了一种改进加权融合算法,用以实现各传感器之间的数据融合,该算法结合了自适应加权融合算法以及基于最小二乘原理的加权融合算法的优点,以对各加权因子重新分配权值的思想来对各个传感器数据进行最终融合,提高了测量精度以及动态适应性。最后,在实际环境以及虚拟环境下对该方法进行了实验评估,验证了该方法的有效性。实验结果表明,在没有良好照明条件及地标的球形储罐环境下,该方法可以保证爬壁机器人定位的准确性。 相似文献
18.
分析了一套焊接机器人视觉焊缝跟踪系统的总体构成.首先简述了焊接机器人及跟踪系统的总体构成,分析了机器人视觉系统寻找焊缝位置的视觉处理的动作流程,并对其中重要的步骤进行了详细的描述,重点介绍了机器人依照输入偏差与示教轨迹叠加跟踪真实焊缝的控制过程.最后使用Matlab软件仿真3关节平面机器人的跟踪焊缝的运动. 相似文献
19.
20.
提出一种循迹机器人控制系统,通过实时修正机器人坐标与理想运动轨迹之间的偏移,实现机器人快速、有效的循迹。首先,采用粒子群优化算法规划理想运动轨迹;其次,根据正交落地码盘与陀螺仪实时获取机器人坐标及运动轨迹,经与线性化的理想运动轨迹比对,确定偏移量及方向;最后,将偏移量修正转化为机器人运动速度控制,从而实现了高精度闭环运动控制。实验结果表明,基于该控制系统搭建的机器人平台,线性化的理想轨迹和实际轨迹比对的最大偏差值为50.0 mm,在此偏差值内,实时修正偏移量,机器人能够自动回到线性化的理想轨迹上运行,且运行平稳、舒展,完全保证了机器人所要求完成的终点任务,与现有循迹机器人控制方法相比,提出的循迹机器人控制系统实现了较高精度的循迹与定位。 相似文献