首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The possible mechanisms of action of the inhibitory effect of abruquinone A on the respiratory burst in rat neutrophils in vitro was investigated. 2. Abruquinone A caused an irreversible and a concentration-dependent inhibition of formylmethionylleucyl-phenylalanine (fMLP) plus dihydrocytochalasin B (CB)- and phorbol 12-myristate 13-acetate (PMA)-induced superoxide anion (O2.-) generation with IC50 values of 0.33 +/- 0.05 microgram ml-1 and 0.49 +/- 0.04 microgram ml-1, respectively. 3. Abruquinone A also inhibited O2 consumption in neutrophils in response to fMLP/CB and PMA. However, abruquinone A did not scavenge the generated O2.- in xanthine-xanthine oxidase system and during dihydroxyfumaric acid (DHF) autoxidation. 4. Abruquinone A inhibited both the transient elevation of [Ca2+]i in the absence of [Ca2+]o (IC50 7.8 +/- 0.2 micrograms ml-1) and the generation of inositol trisphosphate (IP3) (IC50 10.6 +/- 2.0 micrograms ml-1) in response to fMLP. 5. Abruquinone A did not affect the enzyme activaties of neutrophil cytosolic protein kinase C (PKC) and porcine heart protein kinase A (PKA). 6. Abruquinone A had no effect on intracellular guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels but decreased the adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. 7. The cellular formation of phosphatidic acid (PA) and phosphatidylethanol (PEt) induced by fMLP/ CB was inhibited by abruquinone A with IC50 values of 2.2 +/- 0.6 micrograms ml-1 and 2.5 +/- 0.3 micrograms ml-1, respectively. Abruquinone A did not inhibit the fMLP/CB-induced protein tyrosine phosphorylation but induced additional phosphotyrosine accumulation on proteins of 73-78 kDa in activated neutrophils. 8. Abruquinone A inhibited both the O2.- generation in PMA-activated neutrophil particulate NADPH oxidase (IC50 0.6 +/- 0.1 microgram ml-1) and the iodonitrotetrazolium violet (INT) reduction in arachidonic acid (AA)-activated cell-free system (IC50 1.5 +/- 0.2 micrograms ml-1) 9. Collectively, these results indicate that the inhibition of respiratory burst in rat neutrophils by abruquinone A is mediated partly by the blockade of phospholipase C (PLC) and phospholipase D (PLD) pathways, and by suppressing the function of NADPH oxidase through the interruption of electron transport.  相似文献   

2.
1. The activation of neutrophils with particulate stimuli such as zymosan induces the generation of the C-X-C chemokine interleukin (IL)-8. There is evidence that neutrophil derived IL-8 plays an important role in human diseases such as the adult respiratory distress syndrome. In the present study, we examined the effects of cyclic AMP elevating agents on the ability of human neutrophils to generate IL-8 in response to zymosan particles. 2. The PDE4 inhibitor rolipram had limited effect on zymosan-induced IL-8 generation. In contrast, the PDE4 inhibitors RP 73401 and SB 207499 concentration-dependently suppressed IL-8 generation. The potency of these inhibitors was RP 73401 > SB 207499 > rolipram which is correlated with their rank order of potency at inhibiting the catalytic site of purified neutrophil PDE4. Pretreatment of neutrophils with the PDE3 inhibitor ORG 9935 or the PDE5 inhibitor zaprinast had no effect on IL-8 generation. 3. The prostanoids prostaglandin E1 (PGE1) and PGE2 inhibited zymosan-induced IL-8 release from neutrophils in a dose-dependent manner, in response to 10(-5) M PGE1 and PGE2 inhibiting IL-8 generation by 89% and 75%, respectively. Similarly, the beta2-adrenoceptor agonist salbutamol also inhibited IL-8 generation, but it was less effective than the prostanoids. 4. Significant synergism between prostanoids or salbutamol and the PDE4 inhibitors to inhibit IL-8 generation was observed. In contrast, there was no significant synergism between PGE2 and the PDE3 inhibitor ORG 9935 or the PDE5 inhibitor zaprinast. 5. In order to evaluate the potential role of protein kinase A in mediating the inhibitory effects of cyclic AMP-elevating agents, we used the protein kinase A inhibitors, H 89 and KT 5720. Pretreatment of neutrophils with these drugs completely reversed the inhibitory effects of a combination treatment with rolipram and PGE2 on zymosan-induced IL-8 release. 6. Microscopic examination revealed that most neutrophils contained one or more zymosan particles and that combination treatment with rolipram and PGE2 noticeably reduced the number of ingested particles. Moreover, there was a significant reduction in the percentage of neutrophils which ingested three or more zymosan particles. 7. Thus, our results demonstrate that cyclic AMP-elevating agents modulate the ability of neutrophils to generate IL-8 in response to a particulate stimulus. However, these agents also modulate the ability of neutrophils to phagocytose zymosan particles. Whether this effect will translate into inhibition of the ability of neutrophils to deal with infectious agents needs to be investigated further.  相似文献   

3.
1. The aim of this study was to establish the role of nitric oxide (NO) and cyclic GMP in chemotaxis and superoxide anion generation (SAG) by human neutrophils, by use of selective inhibitors of NO and cyclic GMP pathways. In addition, inhibition of neutrophil chemotaxis by NO releasing compounds and increases in neutrophil nitrate/nitrite and cyclic GMP levels were examined. The ultimate aim of this work was to resolve the paradox that NO both activates and inhibits human neutrophils. 2. A role for NO as a mediator of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis was supported by the finding that the NO synthase (NOS) inhibitor L-NMMA (500 microM) inhibited chemotaxis; EC50 for fMLP 28.76 +/- 5.62 and 41.13 +/- 4.77 pmol/10(6) cells with and without L-NMMA, respectively. Similarly the NO scavenger carboxy-PTIO (100 microM) inhibited chemotaxis; EC50 for fMLP 19.71 +/- 4.23 and 31.68 +/- 8.50 pmol/10(6) cells with and without carboxy-PTIO, respectively. 3. A role for cyclic GMP as a mediator of chemotaxis was supported by the finding that the guanylyl cyclase inhibitor LY 83583 (100 microM) completely inhibited chemotaxis and suppressed the maximal response; EC50 for fMLP 32.53 +/- 11.18 and 85.21 +/- 15.14 pmol/10(6) cells with and without LY 83583, respectively. The same pattern of inhibition was observed with the G-kinase inhibitor KT 5823 (10 microM); EC50 for fMLP 32.16 +/- 11.35 and > 135 pmol/10(6) cells with and without KT 5823, respectively. 4. The phosphatase inhibitor, 2,3-diphosphoglyceric acid (DPG) (100 microM) which inhibits phospholipase D, attenuated fMLP-induced chemotaxis; EC50 for fMLP 19.15 +/- 4.36 and 61.52 +/- 16.2 pmol/10(6) cells with and without DPG, respectively. 5. Although the NOS inhibitors L-NMMA and L-canavanine (500 microM) failed to inhibit fMLP-induced SAG, carboxy-PTIO caused significant inhibition (EC50 for fMLP 36.15 +/- 7.43 and 86.31 +/- 14.06 nM and reduced the maximal response from 22.14 +/- 1.5 to 9.8 +/- 1.6 nmol O2-/10(6) cells/10 min with and without carboxy-PTIO, respectively). This suggests NO is a mediator of fMLP-induced SAG. 6. A role for cyclic GMP as a mediator of SAG was supported by the effects of G-kinase inhibitors KT 5823 (10 microM) and Rp-8-pCPT-cGMPS (100 microM) which inhibited SAG giving EC50 for fMLP of 36.26 +/- 8.77 and 200.01 +/- 43.26 nM with and without KT 5823, and 28.35 +/- 10.8 and 49.25 +/- 16.79 nM with and without Rp-8-pCTP-cGMPS. 7. The phosphatase inhibitor DPG (500 microM) inhibited SAG; EC50 for fMLP 33.93 +/- 4.23 and 61.12 +/- 14.43 nM with and without DPG, respectively. 8. The NO releasing compounds inhibited fMLP-induced chemotaxis with a rank order of potency of GEA 3162 (IC50 = 14.72 +/- 1.6 microM) > GEA 5024 (IC50 = 18.44 +/- 0.43 microM) > SIN-1 (IC50 > 1000 microM). This order of potency correlated with their ability to increase cyclic GMP levels rather than the release of NO, where SIN-1 was most effective (SIN-1 (EC50 = 37.62 +/- 0.9 microM) > GEA 3162 (EC50 = 39.7 +/- 0.53 microM) > GEA 5024 (EC50 = 89.86 +/- 1.62 microM)). 9. In conclusion, chemotaxis and SAG induced by fMLP can be attenuated by inhibitors of phospholipase D, NO and cyclic GMP, suggesting a role for these agents in neutrophil activation. However, the increases in cyclic GMP and NO induced by fMLP, which are associated with neutrophil activation, are very small. In contrast much larger increases in NO and cyclic GMP, as observed with NO releasing compounds, inhibit chemotaxis.  相似文献   

4.
OBJECTIVE: To investigate the role of phospholipase during the activation and priming of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by peritoneal dialysis effluent (PDE). DESIGN: Examine the action of 4-hour dwell PDE upon phospholipase activation in the circulating neutrophils obtained from healthy individuals. RESULTS: We have previously reported that PDE stimulated superoxide release by the NADPH oxidase of human neutrophils and primed the response to the bacterial peptide, fMLP (fMetLeuPhe). To elucidate the biochemical mechanisms underlying these observations, we have examined the roles of phospholipases (PL) C, D, and A2, whose activation causes the release of a range of intracellular secondary messengers. Following fMLP stimulation, we observed a rapid activation of both PLC and PLD as well as a small but nonsignificant increase in PLA2 activity. Peritoneal dialysis effluent alone failed to stimulate either PLC or PLD, while pre-incubation with PDE had no affect upon fMLP-induced PLC and PLD activation. However, PDE caused a small but nonsignificant increase in PLA2 activity (which was comparable to that observed with fMLP) and primed the fMLP-induced response. In common with a role for PLA2 and the subsequent release of arachidonic acid (AA), we have demonstrated dose-dependent inhibition of PDE-induced superoxide release by the PLA2 inhibitor mepacrine, as well as activation and priming of the fMLP-induced superoxide generation by AA. CONCLUSIONS: These results imply that PDE-induced NADPH-oxidase activation and priming in human neutrophils is mediated via a PLA2-dependent but PLC- and PLD-independent mechanism.  相似文献   

5.
1. CD19+ B lymphocytes were purified from the peripheral blood of normal and atopic subjects to analyse and compare the phosphodiesterase (PDE) activity profile, PDE mRNA expression and the importance of PDE activity for the regulation of B cell function. 2. The majority of cyclic AMP hydrolyzing activity of human B cells was cytosolic PDE4, followed by cytosolic PDE7-like activity; marginal PDE3 activity was found only in the particulate B cell fraction. PDE1, PDE2 and PDE5 activities were not detected. 3. By cDNA-PCR analysis mRNA of the PDE4 subtypes A, B (splice variant PDE4B2) and D were detected. In addition, a weak signal for PDE3A was found. 4. No differences in PDE activities or mRNA expression of PDE subtypes were found in B cells from either normal or atopic subjects. 5. Stimulation of B lymphocytes with the polyclonal stimulus lipopolysaccharide (LPS) induced a proliferative response in a time- and concentration-dependent manner, which was increased in the presence of interleukin-4 (IL-4). PDE4 inhibitors (rolipram, piclamilast) led to an increase in the cellular cyclic AMP concentration and to an augmentation of proliferation, whereas a PDE3 inhibitor (motapizone) was ineffective, which is in accordance with the PDE profile found. The proliferation enhancing effect of the PDE4 inhibitors was partly mimicked by the cyclic AMP analogues dibutyryl (db) cyclic AMP and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate, Sp-isomer (dcl-cBIMPS), respectively. However, at concentrations exceeding 100 microM db-cyclic AMP suppressed B lymphocyte proliferation, probably as a result of cytotoxicity. Prostaglandin E2 (PGE2, 1 microM) and forskolin (10 microM) did not affect B cell proliferation, even when given in combination with rolipram. 6. Inhibition of protein kinase A (PKA) by differentially acting selective inhibitors (KT 5720, Rp-8-Br-cyclic AMPS) decreased the proliferative response of control cells and reversed the proliferation enhancing effects of rolipram. 7. Importantly, PDE4 activity in LPS/IL-4-activated B lymphocytes decreased by about 50% compared to unstimulated control values. 8. We conclude that an increase in cyclic AMP, mediated by down-regulation of PDE4 activity, is involved in the stimulation of B cell proliferation in response to LPS/IL-4. B cell proliferation in response to a mitogenic stimulus can be further enhanced by pharmacological elevation of cyclic AMP.  相似文献   

6.
OBJECTIVE AND DESIGN: We investigated the in vitro responsiveness of neutrophils adherent to fibronectin (FN) and laminin (LM), toward natural pro-inflammatory and/or phagocyte-activating agents. MATERIALS AND METHODS: Neutrophils from normal volunteers were layered on polystyrene wells precoated or not with FN and/or LM and tested for their ability of responding to eleven pro-inflammatory mediators by evaluation of superoxide anion (O2-) production and adherence. Results, expressed as mean +/-1SEM, were evaluated by non-parametric analyses (Mann-Whitney U-test or Kruskal-Wallis non-parametric ANOVA analysis) RESULTS: Precoating polystyrene wells with LM or FN prevented the plastic-induced neutrophil (O2-) production. Among eleven agents, tumor necrosis factor-alpha (TNF, 3.0+/-0.3 nmoles (O2-)/5 x 10(4) neutrophils/180 min, p < 0.001), granulocyte-macrophage colony stimulating factor (GM-CSF, 2.1+/-0.3 nmoles (O2-)/5 x 10(4) neutrophils/180 min, p < 0.05) and formyl-peptides (fMLP, 2.5+/-0.5 nmoles (O2-)/5 x 10(4) neutrophils/180min, p < 0.01) caused massive (O2-) production by neutrophils adherent to FN. None of the mediators was capable of triggering (O2-) production by neutrophils adherent to LM. LM, mixed with FN to coat wells, caused a dose-dependent inhibition of the oxidative burst triggered by TNF (IC50 LM: 0.84+/-0.03 microg, mean+/-1 SEM), GM-CSF (IC50 LM: 0.36+/-0.16micro/g, mean+/-1SEM) and fMLP (IC50 LM: 0.54+/-0.008 microg, mean+/-1 SEM). To the contrary, fMLP (85.5+/-27.7%), TNF (163.1+/-67.5%), and GM-CSF (121.8+/-66.4%) caused a significant augmentation of neutrophil adherence to LM, suggesting that LM-mediated inhibition of neutrophil oxidative metabolism does not depend on the concomitant LM-induced inhibition of neutrophil adherence. Finally, neither solid-phase FN nor LM affected (O2-) production by neutrophils in response to immune complexes. CONCLUSIONS: Extracellular matrix glycoproteins dictate the response of neutrophils to soluble mediators but not to immune complexes. This appears to be a biologically meaningful mechanism to localise the risk of cellular reactions to mediators that are able to diffuse easily from tissue sites of generation and become widely distributed in body fluids during inflammatory diseases.  相似文献   

7.
Essential thrombocythaemia (ET) is frequently associated with neutrophil and platelet dysfunction, and with increased incidence of vascular complications (thrombosis, haemorrhage). Several interactions between platelets and neutrophils have been reported, and the reciprocal actions between these cells may have an important role both in thromboregulation and in diseases such as those caused by uncontrolled neutrophil activation. In the current paper the authors studied 15 patients affected by ET and 10 normal subjects as controls. Circulating neutrophils and platelets were purified and were recombined in constant ratios (50:1, 100:1 and 200:1) and the individual platelet to neutrophil ratio. Superoxide anion (O2-) generation and luminol-enhanced chemiluminescence (CL) were studied after neutrophil stimulation with fMLP. In normal subjects both O2- generation and CL were inhibited by autologous platelets in a dose-dependent manner. In ET patients, on the contrary, platelet-dependent inhibition of O2- generation did not occur, while a dose-dependent inhibition of CL was observed. Two groups of ET patients were found: patients with neutrophil O2- generation and CL within the normal range, and patients with significantly reduced neutrophil respiratory burst. However, no differences were found between these two groups of patients in terms of platelet effects towards fMLP-stimulated neutrophils. Therefore, platelets from ET patients were not able to exert the homeostatic control towards neutrophil O2- generation shown by platelets from normal subjects, and this phenomenon may have a role in the clinical setting. In fact, O2- has been shown to be a very strong direct platelet activator, is able to inactivate nitric oxide (which is a powerful inhibitor of platelet aggregation and adhesion to endothelium), and is directly involved in neutrophil-mediated tissue damage.  相似文献   

8.
We evaluated the effect of ibudilast on superoxide generation in human neutrophils by chemiluminescence development using luciferine analog, FCLA. By incubating neutrophils with ibudilast (2-200 microM) for more than 10 minutes, fMLP- or PMA-induced chemiluminescence was enhanced. However, the fMLP-induced chemiluminescence was suppressed by incubation for less than 10 minutes. This suppressed effect was missing with PMA-induced chemiluminescence. On the both fMLP- and PMA-induced chemiluminescence, the priming effect of ibudilast was further enhanced by the treatment with H-7, a protein kinase C inhibitor. In contrast, the priming effect of ibudilast on the fMLP-induced chemiluminescence was abolished by the treatment with ST-638, a selective inhibitor of tyrosine kinase. Ibudilast showed a transient stimulatory effect on cyclic AMP accumulation which continued for only a few minutes. Ibudilast showed no significant effect on phospholipase D dependent chemiluminescence, 1,4,5 trisphosphate level, or protein kinase C activity. Ibudilast inhibited extracellular calcium influx. These results suggest that ibudilast acts on or through tyrosine kinase to achieved its priming effect on the fMLP-induced chemiluminescence. The early and transient increase in cyclic AMP level may explain the inhibitory effect of ibudilast on the fMLP-induced chemiluminescence after short time of incubation.  相似文献   

9.
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.  相似文献   

10.
We have reported previously that the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) inhibits transiently Ca2+ entry through the plasma membrane Ca2+ pathway activated by emptying the intracellular Ca2+ stores (Montero, M., García-Sancho, J., and Alvarez, J. (1993) J. Biol. Chem. 268, 13055-13061). We show here that calyculin A and okadaic acid, inhibitors of protein phosphatases 1 and 2A, prevent the spontaneous reversion of the fMLP-induced inhibition of the entry of Ca2+ and Mn2+ (used as a Ca2+ surrogate), leading to a permanently inhibited Ca2+ entry pathway. At high concentrations or long incubation times the phosphatase inhibitors were even able to inhibit the store-operated Ca2+ entry pathway (SOCP) in the absence of fMLP. Inhibition of SOCP by phorbol dibutyrate, which is not reversible, was not modified by phosphatase inhibitors. These results provide additional support for the view that fMLP inhibits SOCP through phosphorylation of either the SOCP protein or a regulatory protein and indicate that dephosphorylation mediated by protein phosphatases 1 and/or 2A restores the activity of SOCP after inhibition by fMLP. The time course of the inhibition of SOCP by fMLP was similar to the one reported previously for the transient fMLP-induced phosphorylation of a 47-kDa protein involved in the generation of respiratory burst, which was similarly affected by the phosphatase inhibitors.  相似文献   

11.
The neutrophil respiratory burst was examined by the technique of luminol-dependent chemiluminescence (LDCL) triggered by submaximal concentrations of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in diluted whole blood. We sought to identify the chemical species responsible for LDCL in whole blood, to examine the role of leukotriene B4 (LTB4) and other arachidonic acid metabolites as mediators of the fMLP signaling pathway, and to investigate the effect of peroxynitrite on this response. Both sodium azide and taurine significantly inhibited LDCL (93% inhibition with 100 microM azide, 52% inhibition with 10 mM taurine). More modest inhibition was seen with superoxide dismutase (SOD), catalase, the nitric oxide synthase inhibitor monomethyl-L-arginine (L-NMMA), and with inhibitors of the cyclooxygenase (indomethacin), lipoxygenase (AA-861; no effect), and cytochrome P-450 (SKF 525-A) pathways of arachidonic acid metabolism. The nitric oxide donor SIN-1 (1-100 microM) and peroxynitrite (10-300 microM) also augmented fMLP-induced LDCL. The augmentation seen with peroxynitrite and SIN-1 was attenuated by SOD. Despite the increase in LDCL, peroxynitrite caused a dose-related inhibition of fMLP-stimulated LTB4 release. In summary, our results indicate that (1) LDCL elicited by fMLP in diluted whole blood appears primarily mediated by hypochlorous acid derived from myeloperoxidase; (2) pretreatment with the nitric oxide donor SIN-1 or with peroxynitrite augments LDCL; and (3) LTB4 release does not contribute to fMLP-stimulated LDCL or in the modulation of LDCL by SIN-1 or peroxynitrite.  相似文献   

12.
The synthetic formylpeptide fMLP is widely used as a model chemoattractant and secretagogue for mammalian neutrophils. Despite possessing fMLP receptors, equine neutrophils do not produce superoxide anions in response to fMLP and there is no inflammatory reaction in the horse when fMLP is injected intradermally. The functional capability of these receptors was investigated after pretreatment with recognized priming agents. Purified neutrophils were pretreated with lipopolysaccharide (LPS), platelet-activating factor (PAF), or tumor necrosis factor alpha (TNF-alpha) and superoxide anion generation and shape change quantified by lucigenin-dependent chemiluminescence (LDCL) and flow cytometry, respectively. LPS, TNF-alpha, and PAF pretreatment induced significant LDCL in response to fMLP; similarly LPS pretreatment was a prerequisite for fMLP-stimulated neutrophil polarization in response to fMLP. However, LPS failed to induce fMLP-mediated chemotaxis of equine neutrophils. These data indicate that equine neutrophil fMLP receptors are not vestigial as previously thought but can trigger both respiratory burst activity and cell polarization responses after priming.  相似文献   

13.
Exposure of neutrophils to a variety of agonists including soluble chemoattractant peptides and cytokines results in degranulation and activation of the oxidative burst (effector functions) that are required for bacterial killing. At present, the signaling pathways regulating these important functions are incompletely characterized. Mitogen-activated protein (MAP) kinases (MAPK) as well as members of a family of "renaturable kinases" are rapidly activated in neutrophils in response to diverse physiological agonists, suggesting that they may regulate cell activation. Antagonists of phosphatidyl inositol-3-(OH) kinase (PI3-kinase) such as wortmannin (Wtmn) inhibit these effector responses as well as certain of the above-mentioned kinases, leading to the suggestion that these enzymes lie downstream of PI3-kinase in the pathway regulating the oxidative burst and granule secretion. However, an apparent discrepancy exists in that, while virtually obliterating activity of PI3-kinase and the oxidase at low concentrations (ID50 < 20 nM), Wtmn has only variable inhibitory effects on MAPK even at substantially higher concentrations (75-100 nM). This raises the possibility that the inhibitory effects of Wtmn are mediated via other enzyme systems. The purpose of the current study was therefore to compare the effects of Wtmn on PI3-kinase activity and on the chemoattractant-activated kinases, and to determine the potential relationship of these pathways to microbicidal responses. In human neutrophils, both the oxidative burst and granule secretion induced by fMLP were inhibited by Wtmn but at markedly different concentrations: the oxidative burst was inhibited with an ID50 of < 5 nM while granule secretion was only partially inhibited at concentrations exceeding 75 nM. Activation of both MEK-1 and MAPK in response to fMLP was only partially inhibited by high doses of Wtmn (ID50 of > 100 nM and approximately 75 nM, respectively). In contrast, Wtmn potently inhibited fMLP-induced activation of the 63 and 69 kDa renaturable kinases (ID50 approximately 5-10 nM). We speculate that the renaturable kinases may be involved in the regulation of the oxidative burst, whereas the MAPK pathway may play a role in other neutrophil functions such as granule secretion.  相似文献   

14.
1. In this study, the underlying mechanism of stimulation of respiratory burst by kazinol B, a natural isoprenylated flavan, in rat neutrophils in vitro was investigated. 2. Kazinol B concentration-dependently stimulated the superoxide anion (O2*-) generation, with a lag but transient activation profile, in neutrophils but not in a cell-free system. The maximum response (13.2+/-1.4 nmol O2*- 10 min(-1) per 10(6) cells) was observed at 10 microM kazinol B. 3. Pretreatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) or formylmethionyl-leucyl-phenylalanine (fMLP) significantly enhanced the O2*- generation following the subsequent stimulation of cells with kazinol B. 4. Cells pretreated with EGTA or a protein kinase inhibitor staurosporine effectively attenuated the kazinol B-induced O2*- generation. However, a p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and a phosphoinositide 3-kinase (PI3K) inhibitor wortmannin had no effect on the kazinol B-induced response. 5. Kazinol B significantly stimulated [Ca2+]i elevation in neutrophils, with a lag and slow rate of rise activation profile, and this response was attenuated by a phospholipase C (PLC) inhibitor U73122. Kazinol B also stimulated the inositol bis- and trisphosphate (IP2 and IP3) formation with a 1 min lag time. 6. The membrane-associated PKC-alpha and PKC-theta but not PKC-iota were increased following the stimulation of neutrophils with kazinol B. It was more rapid and sensitive in the activation of PKC-theta than PKC-alpha by kazinol B. Kazinol B partially inhibited the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to the neutrophil cytosolic PKC. 7. Neither the cellular mass of phosphatidic acid (PA) and phosphatidylethanol (PEt), in the presence of ethanol, nor the protein tyrosine phosphorylation were stimulated by kazinol B. In addition, the kazinol B-induced O2*- generation remained relatively unchanged in cells pretreated with ethanol or a tyrosine kinase inhibitor genistein. 8. Collectively, these results indicate that the stimulation of the respiratory burst by kazinol B is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.  相似文献   

15.
Interleukin-8 (IL-8), a recently described peptide cytokine, is a neutrophil chemoattractant and activator that exerts effects similar to fMLP, yet their receptors and their roles in pathophysiology differ. The effect of IL-8 on the neutrophil cytoskeleton has not been well studied; therefore, we compared and contrasted the effects of IL-8 and fMLP on neutrophil actin conformation and on the signal pathway regulation of actin responses. IL-8 caused a rapid, dose-dependent increase in neutrophil F-actin content within 30 seconds. The maximum increase was twofold. These changes were accompanied by the development of F-actin-rich pseudopods, as noted with fluorescence microscopy and scanning electron microscopy. Selected biochemical inhibitors were used to study the regulation of the IL-8-induced actin changes. Incubation of neutrophils with 2 micrograms/mL pertussis toxin resulted in a 67% inhibition of the IL-8-induced F-actin increase. The protein kinase C (PKC) inhibitors, staurosporine and H7, did not inhibit the increase in F-actin caused by IL-8. IL-8 caused a rapid increase in neutrophil intracellular calcium that could be completely inhibited by the chelating agent 1,2-bis(o-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid (BAPTA). However, BAPTA-treated neutrophils retained the ability to increase F-actin in response to IL-8. Similar results were seen with fMLP, indicating that, similar to fMLP, the IL-8-induced actin response is mediated through pertussis-toxin-sensitive G-proteins but is neither dependent on PKC nor increases in cytosolic calcium. Thus, although IL-8 and fMLP exert their effects on neutrophils through different receptors, the signal transduction pathways used and the effects on actin conformation and pseudopod formation are similar.  相似文献   

16.
Increased synthesis of insulin-like growth factor-1 is induced in murine macrophages by prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNFalpha). Accordingly, we have investigated mechanisms regulating synthesis of PGE2 that might contribute to autocrine/paracrine effects on insulin-like growth factor-1 production. In response to zymosan, TNFalpha specifically induced a 5-fold increase in PGE2 synthesis, at the same time decreasing PGD2 production in a reciprocal fashion. Activators of cyclic AMP-dependent protein kinase (PKA), such as PGE2 itself or dibutyryl cyclic AMP, did not modify PGE2 production by themselves but potentiated the TNFalpha-induced increase in PGE2; this effect required both RNA and protein synthesis. No significant change in arachidonate release or production of other eicosanoids was observed. The inducible form of cyclooxygenase-2 (COX2) but not of the constitutive form COX1 was implicated in the generation of both PGE2 and PGD2 in these cells by use of specific inhibitors and effects of dexamethasone. Neither COX1 nor COX2 protein levels were affected by TNFalpha or PKA activators used alone, whereas in association, marked up-regulation of COX2 mRNA and protein was observed. Incubations of cells carried out with PGH2 demonstrated that PGE2 synthase activity was increased after a TNFalpha pretreatment. Taken together, our results suggest that TNFalpha induced a switch from the PGD2 to PGE2 synthesis pathway by regulating PGE2 synthase expression and/or activity and that activators of PKA markedly potentiated the TNFalpha-induced increase in PGE2 through up-regulation of COX2 gene expression.  相似文献   

17.
Synthetic peptides derived from the endogenous protein kinase A inhibitor (PKI) offer a specific means of inhibiting cyclic AMP-dependent protein kinase A (PKA), but their use in whole cells is restricted by the plasma membrane. We have now modified PKI sequences by N-terminal myristoylation to enhance their membrane permeability, and have used the myristoylated (myr) peptides to investigate the role of PKA activation in glucose-induced insulin secretion from intact pancreatic beta-cells. The myristoylated PKI peptides, myr PKI14-22 and myrPKI6-22, were effective inhibitors in vitro of PKA activity extracted from rat islets of Langerhans. In experiments using intact islets, myr PKI14-22 caused a concentration-dependent inhibition of insulin secretion in response to the PKA activators dibutyryl cyclic AMP and forskolin, suggesting that it gained access to the cytosolic compartment of intact beta-cells and inhibited PKA in situ. However, these concentrations of myr PKI14-22 did not inhibit insulin secretion in response to glucose suggesting that the activation of PKA is not required for the initiation of glucose-induced insulin secretion.  相似文献   

18.
The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively. PMA at 1 microM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%. Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCbeta) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA. Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%. Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production. The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane. Western blot analysis revealed the presence of eight PKC isoforms (alpha, betaI, betaII, delta, epsilon, mu, lambda and xi) in RAW 264.7 cells and PMA was shown to induce the translocation of the alpha, betaI, betaII, delta, epsilon and mu isoforms from the cytosol to the cell membrane within 2 min. Pretreatment of cells with PMA for 2-24 h resulted in a time-dependent down-regulation of PKCalpha, betaI, betaII, and delta expression, while the levels of the other four PKC isozymes were unchanged after PMA treatment for 24 h. A decrease in the potentiation of AA release by PMA was observed, concomitant with the time-dependent down-regulation of PKC. These results indicate that PKCbeta has a crucial role in the mediation of cPLA2 activation by the phorbol ester PMA, whereas PMA utilizes PKC epsilon and/or mu to up-regulate AC activity.  相似文献   

19.
Activation of intact human neutrophils by fMLP stimulates phospholipase D (PLD) by an unknown signaling pathway. The small GTPase, ADP-ribosylation factor (ARF), and Rho proteins regulate the activity of PLD1 directly. Cell permeabilization with streptolysin O leads to loss of cytosolic proteins including ARF but not Rho proteins from the human neutrophils. PLD activation by fMLP is refractory in these cytosol-depleted cells. Readdition of myr-ARF1 but not non-myr-ARF1 restores fMLP-stimulated PLD activity. C3 toxin, which inactivates Rho proteins, reduces the ARF-reconstituted PLD activity, illustrating that although Rho alone does not stimulate PLD activity, it synergizes with ARF. To identify the signaling pathway to ARF and Rho activation by fMLP, we used pertussis toxin and wortmannin to examine the requirement for heterotrimeric G proteins of the Gi family and for phosphoinositide 3-kinase, respectively. PLD activity in both intact cells and the ARF-restored response in cytosol-depleted cells is inhibited by pertussis toxin, indicating a requirement for Gi2/Gi3 protein. In contrast, wortmannin inhibited only fMLP-stimulated PLD activity in intact neutrophils, but it has no effect on myr-ARF1-reconstituted activity. fMLP-stimulated translocation of ARF and Rho proteins to membranes is not inhibited by wortmannin. It is concluded that activation of Gi proteins is obligatory for ARF/Rho activation by fMLP, but activation of phosphoinositide 3-kinase is not required.  相似文献   

20.
Intracellular H2O2 generation, as a measure of the respiratory burst, was determined after stimulation of neutrophils by immune complex (IC)-bearing human umbilical vein endothelial cells. Under static conditions, neutrophils basically responded to the immune deposits on resting endothelial cells. The rotating shear forces of approximately 0.7 dynes/cm2, corresponding to the physiological flow in postcapillary venules, completely abolished this basal H2O2 generation. After activation of the IC-bearing endothelial layers with interleukin-1 (IL-1) or tumor necrosis factor (TNF), or both, for 4 hours, rolling adhesion of the neutrophils was induced, accompanied by considerable H2O2 production. The neutrophil respiratory burst was prominently inhibited by anti-FcgammaRIII MoAb 3G8 (72.4%), and partially by MoAb 2E1 against FcgammaRII (38.5%). Both MoAbs together inhibited the Fc-mediated H2O2 generation by 93. 4%. The respiratory burst and rolling adhesion were markedly blocked by MoAb LAM1-3 against L-selectin (91.3%), whereas the nonfunctional anti-L-selectin MoAb LAM1-14 was ineffective. F(ab)2' fragments of MoAb 7A9 against E-selectin inhibited neutrophil rolling by 98.6%, but not the respiratory burst. Moreover, rolling adhesion of neutrophils and the related oxidative burst were CD11b/CD18- independent. In summary, L-selectin has a unique auxiliary function in triggering the FcgammaR-mediated respiratory burst of rolling neutrophils to IC-bearing endothelial cells, thereby substituting CD11b/CD18 under conditions of flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号