首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《塑料科技》2017,(7):81-86
以某一电工仪表外壳为研究对象,模具温度、熔体温度、充填时间和保压压力4个注塑工艺参数为优化目标,制品残余应力和体积收缩率为试验目标函数,采用响应面法(RSM)进行试验设计。所得最优工艺参数优化组合为:模具温度80℃、熔体温度285℃、充填时间1.8 s、保压压力89.18 MPa。经Moldflow模拟,得到最大残余应力与最大体积收缩率分别为54.83 MPa和3.395 4%,这表明响应面模型对工艺参数具有很好的优化效果。以此工艺参数组合为基础,进一步对保压曲线进行优化,得到了近乎最小的残余应力和体积收缩率,从而保证了产品质量,提高了生产效率。  相似文献   

2.
《塑料》2019,(5)
以膨胀箱上盖为研究对象,运用Moldflow软件进行注塑模拟,存在充填不完全、翘曲变形和体积收缩率偏大等缺陷。以模具温度、熔体温度、保压压力、注塑压力为影响因素,确定了4因素3水平的正交试验方案,基于Moldflow模拟,分析了工艺参数对翘曲变形和体积收缩率的影响。结果表明,在研究范围内,工艺参数组合对翘曲变形和体积收缩率的影响能力分别为"保压压力熔体温度模具温度注塑压力"和"熔体温度模具温度保压压力注塑压力",最优的工艺参数分别为"模具温度为40℃,熔体温度为200℃,保压压力为60 MPa,注塑压力为120MPa"和"模具温度为40℃,熔体温度为200℃,保压压力为50 MPa,注塑压力为80 MPa"。  相似文献   

3.
以医用导管接头为研究对象,对其注塑成型过程在Moldflow软件中进行模拟,通过极差分析得到工艺参数对导管接头体积收缩率的影响趋势和最佳工艺参数,建立以注塑工艺参数为输入量,塑件的体积收缩率为输出量的BP神经网络模型,并进行训练与测试。结合遗传算法对导管接头的注塑工艺参数进行优化,获得最佳工艺参数为:熔体温度226℃、模具温度47℃、注射压力73 MPa、注射时间0.72 s、保压压力19 MPa、保压时间21 s,得到体积收缩率为12.75%,与优化前极差分析所得的13.13%相比,降低了2.89%。将遗传算法优化后的工艺参数组合应用于产品试生产,得到产品表面质量良好,满足企业的设计要求。  相似文献   

4.
以基因检测仪侧盖注射成型工艺为研究对象,应用Moldflow软件分析,采用正交试验法确定影响塑件装配精度的关键因素为熔体温度和保压压力。综合考虑塑件翘曲变形和体积收缩率,建立二阶响应面模型,获得了优化的注塑工艺参数,通过模拟试验验证了模型的准确性。将最优工艺参数应用到实际生产中,获得了符合设计要求的合格产品。  相似文献   

5.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

6.
注塑制品的质量在很大程度上都取决于工艺参数的设置,因此为提高注塑成型制品的质量,优化注塑工艺参数,选取模具温度(A),熔体温度(B),保压压力(C),保压时间(D)作为优化参数,翘曲变形量(H)作为反应指标,选用响应曲面法,利用Design-Expert软件设计中心复合实验,对实验结果进行方差分析,建立回归预测模型,得到各工艺参数及其融合作用对注塑制品质量的影响规律,利用Moldflow软件验证预测模型的可靠性,最后进行实际的试模实验验证优化的准确性。结果表明,最优工艺参数为:模具温度为46.36℃,熔体温度为230.40℃,保压压力为57.08 MPa,保压时间为6.59 s,此时的翘曲变形量为0.249 mm,塑件质量最优。  相似文献   

7.
基于Moldflow软件,采用正交试验和响应曲面法,对高铁橡胶外风挡注射成型的模拟方案优化设计,并对注射成型工艺参数进行研究。结果表明:模具温度是影响橡胶外风挡顶出时的体积收缩率和缩痕指数的最显著工艺因素,其次分别是熔体(胶料)温度、保压时间、保压压力、注射时间;优化的注射工艺参数为:模具温度185℃,熔体温度65℃,注射时间160 s,保压时间14 s,保压压力110 MPa。在此工艺参数下的橡胶外风挡顶出时的体积收缩率最大值为4.165%,缩痕指数最大值为5.103%。  相似文献   

8.
采用Moldflow软件对医用SEBS制品的成型过程进行仿真实验,以体积收缩率为评价指标,研究了工艺参数的改变对制品收缩率的影响。并通过圆柱形试样注塑成型实验,验证模拟了实验中工艺参数对收缩变形规律的影响。结果表明,熔体温度和保压压力的变化对塑件体积收缩率的影响较为显著;通过圆柱形试样的模拟及实验验证,得出了医用瓶塞注塑成型模拟实验的结果具有一定的参考价值,并确定了医用瓶塞的最佳工艺方案组合:熔体温度180℃,注射压力25 Mpa,保压压力20 Mpa,模具温度20℃,保压时间16 s。最小收缩率为1.76%,小于其他工艺条件下的收缩率,说明注塑工艺对SEBS制品的收缩变形具有较大影响。  相似文献   

9.
针对壁厚注塑件成型中的收缩现象,分析影响塑件收缩的主要因素,综合运用注塑仿真和正交设计安排合理的试验方案,通过极差分析和方差分析获得1组最优工艺参数组合,并对其进行仿真验证。结果表明,当成型材料为Lustran ABS Elite HH 1827,熔体温度为200℃,模具温度为80℃,保压压力为注射压力的100%,保压时间为15s,冷却时间为25 s,注射时间为3 s时,塑件收缩率最小,熔体温度对塑件收缩变形影响最大。  相似文献   

10.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

11.
《塑料》2018,(6)
选取聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯(ABS)共聚物作为填充材料,运用Moldflow软件对某温控器外壳注塑成型过程进行模流分析,得到PC和ABS的填充、翘曲变形分析结果,表明PC更适于生产温控器外壳。通过设计正交实验,探究了各工艺参数对翘曲量的影响。结合极差分析得出,影响塑件质量的顺序为:保压时间、熔体温度、保压压力、模具表面温度,并得到最优工艺参数,即模具表面温度为95℃,熔体温度为285℃,保压时间为11 s,保压压力为130 MPa。优化后,塑件的体积收缩率和最大翘曲量为2.311%,0.927 mm,分别降低了54.75%和40.69%,结果表明,优化后的工艺参数减小了翘曲量。  相似文献   

12.
针对塑件在成型过程中的多指标优化问题,利用注塑仿真软件对塑件进行仿真,预测其翘曲、体积收缩以及缩痕效果,并结合正交试验、极差分析和综合评分方法对注塑工艺参数进行优化。结果证明,当模具温度为50℃,熔体温度为200℃,保压压力为注射压力的120%,冷却时间为15 s,保压时间为20 s,注射时间为3 s时,塑件成型综合质量较好,注射时间对综合评分影响最大。  相似文献   

13.
以空调转接头塑料制品为例,结合正交实验,以翘曲量为评价指标,研究模具温度、熔体温度、保压压力、保压时间等注塑工艺参数对制品翘曲变形的影响,运用极差法对正交实验结果进行分析,得到各工艺参数对翘曲变形影响的主次程度,最终获得最优工艺参数组合,即模具温度60℃,熔体温度240℃,保压压力35 MPa,保压时间15 s,在此工艺组合下的翘曲量为0.092 1 mm。  相似文献   

14.
以正交试验设计为手段,借助有限元分析平台Moldflow,对某瓶盖注塑成型工艺进行数值模拟。通过分析塑件的工艺性,创建了产品的有限元模型,以最小翘曲变形量为试验指标,分析熔体温度、注射时间、模具温度、保压压力和保压时间对产品质量的影响规律。结果表明:当熔体温度为220℃、模具温度为100℃、注射时间为1.10 s、保压压力为100 MPa、保压时间为7.5 s时,所得产品的翘曲变形量最小,为0.369 9 mm,比初始模拟结果降低了34.77%,为实际注塑成型参数的设置提供了科学的理论指导。  相似文献   

15.
以塑件最小体积收缩量为优化目标,以模具温度、保压时间、保压压力和熔体温度为优化变量,采用BOX(Box Behnken Design)二阶响应曲面法,结合方差分析技术,建立了高适配性体积收缩响应面优化模型,进而优化得出了最优工艺参数组合,通过计算机辅助工程(CAE)分析与成型实验验证,验证表明塑件的体积收缩量减少约8 %左右,满足塑件高精确装配要求,证明了研究工艺优化技术方法的可行性和可靠性。  相似文献   

16.
陈洁琼 《塑料工业》2022,(12):87-93+15
针对新型冠状病毒肺炎(COVID-19)核酸检测卡收缩问题,对制件运用模流软件进行工艺优化,探究注塑成型工艺优化方案。通过对比模具温度、熔体温度、注射时间、保压时间和保压压力,将质量评价指标设置为核酸检测卡的体积收缩率,采用Taguchi正交试验方法选出训练样本,应用多层前馈网络模型(BP)神经网络技术,建立预测模型,并采用改进粒子群算法(PSO)对模型进行优化,以体积收缩率为目标函数,对工艺数据样本进行训练,并进行预测,得到最优体积收缩率为3.864%,其对应的参数为模具温度81℃,熔体温度200℃,注射时间0.6 s,保压时间12 s,保压压力45 MPa,并使用计算机辅助工程(CAE)软件对预测出的体积收缩率的工艺参数进行模拟验证,得到体积收缩率为3.786%,误差仅为2.06%,与优化前(8.954%)相比降低57.72%。并通过试模得到试件外观质量较好,无明显翘曲变形缺陷,经检测试件最大翘曲变形量小于0.15 mm,满足生产要求。表明此改进PSO-BP模型预测塑件的体积收缩率准确精度较高,有一定的生产应用价值。  相似文献   

17.
以某杯形塑件为例,设计了随形冷却水道模具。在Moldflow软件模拟注塑成型过程的基础上,利用正交试验法分析了熔体温度、注射压力、保压压力和保压时间等工艺参数对制品成型周期的影响。通过遗传算法和Moldflow获得的最佳注塑工艺参数为熔体温度180℃,注射压力22 MPa,保压压力16 MPa,保压时间8 s,成型周期14. 11 s。在最佳工艺参数组合下进行注塑成型试验,平均注塑成型周期为14. 19 s。结果表明,模拟结果和试验结果之间相接近。将数值模拟和遗传算法相结合,可以有效提高运算速度和优化效率。  相似文献   

18.
以高铁内风挡为研究对象,利用Moldflow软件对产品的注射成型过程进行有限元模拟。将内风挡的体积收缩率和缩痕指数作为研究目标,采用正交试验法进行数据处理,得到注射工艺参数对内风挡体积收缩率和缩痕指数的影响程度,按照由大到小的顺序排列为模具温度>熔体温度>注射时间>保压时间>保压压力,并且,由响应回归方程得到最佳注射工艺参数。优化结果表明,在模具温度185℃、熔体温度65℃、注射时间115.5 s、保压时间8.49 s、保压压力70 MPa时,体积收缩率和缩痕指数达到最小,分别为7.878%和9.015%,与优化前相比,分别降低了12.5%、10.8%,优化后的工艺参数能够显著降低制品的体积收缩率和缩痕指数,提高内风挡的成型质量。  相似文献   

19.
根据阀座的结构特点,构建了制品的CAE分析模型。利用Moldflow软件对其进行注塑成型数值模拟,以阀座体积收缩率和翘曲变形量为质量评价指标,从影响塑件质量的多个因素中选择模具温度、熔体温度、填充时间、冷却时间、保压时间、保压压力6个因素设计了DOE正交试验,确定出对指标影响较大的4个因素。设计田口正交实验分析这4个因素对指标的影响,优化出注塑工艺参数:熔体温度为270℃,模具温度为70℃,冷却时间为20 s,保压压力为注射压力的90%。对优化结果进行CAE分析验证,效果良好,实现了制品质量指标的多目标优化。利用UG软件设计并制造出阀座注塑模具,生产出合格产品,验证了模拟结果的正确性。  相似文献   

20.
通过对某汽车音响塑件模具进行工艺方案设计,采用Moldflow软件对正交试验中各工艺方案组合进行模流分析,获得体积收缩率、充填时间、总翘曲量等目标函数值。将获得的数据作为样本进行BP神经网络训练,使BP神经网络预测值与Moldflow模拟值之间的吻合程度提高,即欲提高BP神经网络模型的预测精度,可以通过样本训练的多输入和多输出来实现。同时采用训练好的BP神经网络预测最优工艺参数,从而获得最佳工艺参数组合为:注射速率45 cm~3/s,模具温度57℃,保压压力121 MPa,保压时间17 s。通过试模,获得合格的汽车音响塑件模具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号