首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用碳纤维(CF)增强聚苯腈(PN)树脂制备一系列PN/CF复合材料,利用万能试验机和动态热机械分析仪(DMA),研究短CF含量、长度与偶联剂种类对PN树脂力学性能的影响。结果表明,采用苯基三乙氧基硅烷作为偶联剂时力学性能和热稳定性达到最佳水平,相较于未经偶联剂改性PN/CF复合材料的储能模量提高了22.2%,热失重5%温度(Td5%)提高了33.1%;随着CF掺杂量的增加,材料力学性能呈现先增大后减小趋势,在0.3%(质量分数,下同)时获得了最优异力学性能,相较于PN树脂,其弯曲强度提高了38.4%,弯曲模量提升了97.7%;CF长度为6 mm时材料的弯曲强度和储能模量优于CF长度为3 mm时的材料。  相似文献   

2.
在总结聚合物流变学基本理论的基础上,分析了影响聚合物流动性能的各个因素。应用正交实验设计理论,通过测定各参数组合实验的阿基米德螺旋线长度来表征其流动性,考察了熔体温度、注塑压力、保压压力、注塑速率四个因素对6种配方聚丙烯(PP)/碳纤维(CF)复合材料熔体流动性的影响,对于各因素的影响程度的大小进行了对比,同时通过优化工艺条件获得了流动性最好的工艺参数组合,并通过实验验证。应用正交实验得到了最佳工艺参数,对CF含量和材料的熔体流动速率以及螺旋线长度之间的影响关系和机理进行了考察。结果表明,注塑压力和注塑温度对于熔体的流动性能影响最大,PP/CF复合材料的熔体流动速率和螺旋线流动长度随着CF含量的增加而降低,降低的速度先快后慢。  相似文献   

3.
磨碎碳纤维增强环氧树脂复合材料的性能研究   总被引:1,自引:0,他引:1  
牛牧童  吴伟端  陈名名 《塑料工业》2006,34(8):54-56,69
利用两种不同的磨碎碳纤维粉体(CFP)填充环氧树脂(EP),通过熔融共混制备了EP/CFP复合材料。研究了CFP含量、长度与复合材料导电性能、力学性能和热稳定性能的关系,并考察了材料断口形貌。研究表明:P-100型CFP填充的质量分数为25%时,EP/CFP材料的体积电阻率为1.34×106Ω·cm;拉伸强度、拉伸弹性模量、冲击强度和弯曲强度较EP分别提高了124%、186%、98.7%和66.7%,同时材料的热稳定性也略有提高。  相似文献   

4.
为了提高聚丙烯(PP)材料的拉伸性能、摩擦性能等力学性能,采用液相氧化的方法将碳纤维(CF)预处理,并将预处理后的碳纤维填充到聚丙烯中,制备CF/PP复合材料,研究其对聚丙烯材料的力学性能和摩擦性能的影响。实验结果表明:CF/PP复合材料的拉伸性能较PP材料提高、冲击性能降低、材料摩擦系数降低,在一定范围内,材料的拉伸强度与碳纤维的含量基本成正比,但当CF含量超过7.5g时纤维的增强效果变得缓慢。随着CF含量的增加CF/PP复合材料的抗冲击性能、摩擦系数明显下降。  相似文献   

5.
以碳纤维为增强体,用双螺杆挤出机共混制备了碳纤维增强聚甲醛复合材料,研究了碳纤维含量对复合材料的力学性能、热性能、熔体流动性能的影响。结果表明,碳纤维的加入大幅提高了复合材料的力学性能,改善了热稳定性能,但熔体流动速率减小;当碳纤维质量分数为25%时,复合材料的弯曲弹性模量、弯曲强度、拉伸强度、缺口冲击强度、断裂伸长率分别为19.8 GPa,187 MPa,153 MPa,16.2 kJ/m2,0.52%,综合力学性能最佳。  相似文献   

6.
《弹性体》2020,(3)
用聚丙烯腈短切碳纤维(Carbon fiber,简称CF)作为增强剂,天然橡胶(NR)与丁苯橡胶(SBR)作为基相制备了CF/NR/SBR橡胶复合材料,研究了短切碳纤维用量对CF/NR/SBR复合材料的硫化特性、拉伸强度、邵尔硬度、撕裂强度、阿克隆磨耗及导热系数等性能的影响。研究结果表明,随着CF用量的增加,复合材料拉伸强度逐渐减小,最大损失量达到16%,复合材料的硬度逐渐增大,最大增加量达到36%;复合材料的撕裂强度先增加后降低,在碳纤维用量为5份时达到最大值,最大增加量达到37%;复合材料的导热性能逐渐提高,最大增加量达到43%。  相似文献   

7.
采用同向双螺杆挤出机制备了改性粉煤灰填充母料,研究了粉煤灰用量、载体树脂种类和分散剂用量对填充母料熔体流动性能的影响,并探讨了填充母料对高密度聚乙烯(HDPE)复合材料性能的影响。同时,通过差示扫描量热分析(DSC)和热重分析(TG)考察了粉煤灰母料及其填充HPDE复合材料的热性能。结果表明:高熔体流动速率(MFR)的载体树脂有利于粉煤灰母料流动性的提高;随着粉煤灰用量的增加,母料的MFR逐渐减小;随着PE蜡用量的增加,母料的MFR逐渐增大,而当PE蜡用量超过6%后,母料的MFR不再发生明显变化;随粉煤灰母料(粉煤灰含量75%)填充量的增加,HDPE复合材料的拉伸强度和弯曲强度先增大后减小,而断裂伸长率则呈不断下降趋势;少量粉煤灰母料的加入能提高HDPE复合材料的冲击强度,而当粉煤灰母料填充量超过5%后,复合材料的冲击性能下降;填充母料的加入对HDPE结晶熔融行为的影响不大,但使材料的热稳定性有所提高。  相似文献   

8.
柴冈  张雪华  唐辉 《中国塑料》2019,33(6):50-55
采用熔融挤出法制备了添加不同相容剂的聚丙烯/碳纤维(PP/CF)复合材料管道,通过管道长期耐压试验装置、电子万能试验机、冲击试验机以及扫描电子显微镜等方法,探究了不同碳纤维含量和长度及不同相容剂对PP管道力学、纵向回缩率、爆破强度等性能的影响。结果表明,碳纤维填充后的PP降低了PP/CF复合管道材料的整体纵向回缩率,增强了管道的爆破强度;相容剂的添加显著提高了其力学性能。  相似文献   

9.
以聚酯二元醇、异氰酸酯、碳纤维为主要原料,采用预聚体法制备了一系列碳纤维/聚氨酯复合材料,并对该复合材料进行了性能测试和结构表征。研究表明,复合材料的机械性能随着碳纤维长度和含量的增加出现先升高后降低的趋势。当碳纤维长度为3 mm、质量分数为1.0%时,复合材料的机械性能达到最佳值,此时其拉伸强度增加22.7%,撕裂强度增加48.1%,扯断伸长率增加5.9%。热力学分析和动态力学性能研究表明,复合材料的热分解温度提高,质量保留率提高,失重率降低,材料的玻璃化转变温度和软化温度提高,引入碳纤维后材料的耐热性提高。  相似文献   

10.
研究了亚麻纤维的含量和增容剂MAH-g-PE对聚乙烯/亚麻纤维复合材料各项性能的影响。结果表明:随着亚麻纤维含量增大,复合材料力学性能、硬度和维卡软化温度提高,但材料熔体粘度增大。添加MAH-g-PE提高了复合材料的热稳定性,降低了材料吸水性;且添加MAH-g-PE的材料吸水后,其拉伸强度高于未添加MAH-g-PE的材料。  相似文献   

11.
以陶瓷晶须为填料制备了聚甲醛(POM)填充复合材料,研究了陶瓷晶须含量对POM复合材料力学性能、热性能、熔体流动性能的影响。结果表明:适量陶瓷晶须的加入使POM复合材料的力学性能和热稳定性得到改善,并且对材料的熔体流动性影响不大。其中,当陶瓷晶须含量为15%时,POM复合材料的拉伸强度、弯曲强度、缺口冲击强度、弯曲模量和热变形温度比纯POM分别提高了9.5%、11.1%、21.5%、44%和29%,而熔体流动速率(MFR)则仅下降了5.8%。  相似文献   

12.
以拉挤熔融浸渍制备连续碳纤维增强聚酰胺6(CFRPA6)复合材料,通过改变碳纤维(CF)的长度和含量考察材料的各项性能。结果表明,复合材料中CF长度由2~4mm(短CF)增加到8~10mm(长CF),拉伸强度、弯曲强度和硬度最大增幅分别为25.7%、31.7%和3.1%;当CF含量为15%时,长CF增强PA6复合材料的冲击强度比短CF增强PA6提高了16.3%;与短CF增强PA6相比,在长CF含量为3%时,长CF增强PA6的吸水率降幅最大,为15.7%;但CF的长度对CFRPA6复合材料的线膨胀系数影响不大。随着CF的含量增加,除冲击强度外,其他性能均有改善。在CF含量为15%时,短CF增强PA6和长CF增强PA6的拉仲强度比纯PA6分别提高了101.7%和141.9%;弯曲强度比纯PA6分别提高了152.6%和196.2%;硬度比纯PA6分别提高了8.7%和12.1%。冲击强度比纯PA6分别下降了47.7%和39.2%。15%短CF和15%长CF增强PA6的吸水率均为1.3%,比纯PA6下降了31.8%。当CF含量为3%时降幅最大,短CF和长CF增强PA6的线膨胀系数分别下降了89.5%和84.2%。  相似文献   

13.
采用熔融共混的方法制备了硅灰石填充阻燃丙烯腈-丁二烯-苯乙烯共聚物(ABS)复合材料,研究了硅灰石粒径及含量、偶联剂以及加工方式对复合材料力学、外观、阻燃性和成型性的影响。结果表明:硅灰石粒径越大,复合材料的性能和外观越差;0.5%以上的氨基硅烷偶联剂能明显提高复合材料的性能和外观,扫描电子显微镜(SEM)照片显示,该偶联剂能提高硅灰石与树脂基材的相容性;采用侧喂硅灰石方式加工,能提高其保留长度,改善复合材料性能;随着硅灰石添加量的增加,复合材料的缺口冲击强度和光泽度降低,弯曲模量升高,阻燃性也有一定提升,同时,复合材料的熔体流动速率增大,尺寸稳定性提升,每增加1%硅灰石,流动方向线性热膨胀系数(CLTE)降低约2μm/(m·℃)。  相似文献   

14.
采用动态硫化法制备聚丙烯/硅橡胶(PP/SR)复合材料,分析过氧化二异丙苯(DCP)的用量对复合材料加工性能的影响,并进一步研究PP/SR用量比对复合材料缺口冲击强度、热性能及耐老化性能的影响。结果表明:DCP用量的增多使复合材料的熔体流动速率降低。当DCP用量为1.2份时,压缩永久变形达到最低值为34.3%,可以获得具有较高的缺口冲击强度及较好加工性能的PP/SR材料。且SR用量越大,热分解温度越高,材料的热稳定性逐渐提高。PP与SR不能完全相容,加入过多的SR,对复合材料的耐老化性能具有不利影响。最终确定质量比为80∶20的PP/SR复合材料作为公路排水管用高抗冲聚丙烯用料。  相似文献   

15.
以锗硒玻璃(GeSe_4)作为硒源制备一维硒纳米纤维(SeF),将其与碳纤维(CF)按一定体积比混杂,制备硒/碳共混环氧树脂(SeF/CF/EP)复合材料。测量SeF掺杂前后复合材料的体积电阻率变化,分析SeF/CF混杂比对材料导电机敏性的影响。结果表明,SeF掺杂前,碳纤维/环氧树脂复合材料(CF/EP)体积电阻率随纤维长度的增大而降低,随CF含量的增加呈阶段性减小趋势,2、4和6 mm长度的CF/EP复合材料的渗滤阈值分别为0.9%、0.3%和0.05%,随温度的升高,CF/EP复合材料先后呈现正温度效应(PTC)和负温度效应(NTC),无明显光敏特性;SeF掺杂后,复合材料导电性能显著提高,当SeF/CF体积比为3.06时,材料体积电阻率较掺杂前下降91%,随温度的升高,SeF/CF/EP复合材料的体积电阻率始终保持PTC效应,光敏特性显著增强。  相似文献   

16.
利用装有静态混合器的挤出机,制备热塑性聚氨酯弹性体/纳米碳纤维(TPU/CF)复合材料,以超临界二氧化碳(SC-CO2)为发泡剂,通过快速泄压法制备TPU/CF发泡样品,研究CF含量对复合材料熔体流动速率、泡孔结构、导电性能和力学性能的影响。结果表明:随着CF含量的增加,TPU/CF复合材料的熔体流动速率逐渐降低,发泡制品的泡孔平均直径逐渐减小,泡孔密度逐渐升高。当CF含量为24.65%,泡孔密度为4.20×109个/cm3,与TPU相比提高172.7%,泡孔平均直径为4.29μm,与TPU相比下降36.2%。CF含量为4.95%时,发泡倍率达到最大值(1.65)。随着CF含量的增加,发泡倍率逐渐下降。发泡使TPU及其复合材料的电阻率降低。CF的加入提高TPU的拉伸强度,降低断裂伸长率。CF含量为9.89%时,发泡前后材料的拉伸强度达到最大值,分别为8.76 MPa和5.24 MPa。  相似文献   

17.
采用挤出注塑的方法制备了不同配比的聚丙烯/玻璃纤维/滑石粉(PP/GF/talc)复合材料,并对其力学性能、熔体流动性能、热性能及其他特性进行表征。研究表明,PP/GF/talc复合材料中,GF和talc对复合物的力学性能提高有一定协同作用,对拉伸强度的提高可达94.2%,对弯曲强度的提高可达139.5%,对冲击强度的提高达20.4%。GF和talc填充量的增大使复合物的熔体流动性降低。PP/GF/talc中GF和talc的填充量对复合物的熔融温度基本没有影响,同时GF对复合物的结晶温度影响不大,而talc的填充量越大,复合物结晶温度越高。复合物的液氮脆断面的扫描电镜观察显示,PP/GF/talc中GF和talc的取向较一致,talc使应力更集中在GF,从而提高性能,观察结果与力学性能测试结果一致。  相似文献   

18.
用燃煤电厂产生的废弃物粉煤灰作为填料,将粉煤灰进行物理球磨细化改性,再用硅烷偶联剂活化改性,然后与聚丙烯(PP)通过熔融共混制备成复合材料。结果表明,球磨后的粉煤灰制成的复合材料相比于纯PP弯曲强度提高了11.5 %,而且这种复合材料的拉伸强度和冲击强度相比于填充未球磨粉煤灰的材料分别提高了10.7 %和34.1 %,并且其熔体流动速率和热稳定性都有较大提升;经过硅烷偶联剂活化后的粉煤灰制成的复合材料,其力学性能,热稳定性也都得到改善;实验证明粉煤灰的填充对PP有很好的增强增韧效果,并且当改性之后的粉煤灰填充量为20 %(质量分数,下同)时,综合性能最佳。  相似文献   

19.
以尼龙66为基体材料,添加碳纤维、增韧剂、流动改性剂等相关功能助剂,通过双螺杆挤出机制备了碳纤维增强尼龙66复合材料,采用注塑工艺制备了碳纤维增强尼龙66复合材料的标准试样,研究了碳纤维及流动改性剂含量对复合材料力学性能和熔体流动性能的影响。结果表明,提升碳纤维含量可以大幅度提高碳纤维增强尼龙66复合材料的力学性能,当碳纤维质量分数为35%时,复合材料的拉伸强度达到251 MPa,比纯尼龙66树脂提高了210%,弯曲强度由纯树脂的72 MPa提高到358 MPa,提高了397%,缺口冲击强度提高了178%,达到22 kJ/m~2。通过加入流动改性剂可以提高碳纤维增强尼龙66复合材料的熔体流动速率(MFR),并且不影响复合材料的力学性能,当流动改性剂的质量分数为1%时,碳纤维质量分数为25%的复合材料的MFR达到16.1 g/(10 min),比未添加流动改性剂时提高了193%,碳纤维质量分数为35%的复合材料的MFR为15.5 g/(10 min),比未添加流动改性剂时提高了319%。  相似文献   

20.
陈祯  王亚凤  陈兴刚  桑晓明 《塑料》2020,49(3):24-27
以改性短碳纤维为增强材料增强PC/ABS合金,采用熔融共混的方法制备了PC/ABS短碳纤维复合材料,研究了复合材料样条的力学性能与短碳纤维含量的关系。扫描电镜和红外光谱分析表明,纤维的改性有利于其与PC/ABS合金的结合。拉伸性能测试结果表明,3和6 mm改性碳纤维均能提高复合材料的拉伸强度,3 mm碳纤维复合材料优于6 mm。当3 mm的改性碳纤维复合材料添加量为10%时,复合材料的拉伸强度比含3%碳纤的复合材料提高了35. 52%;动态力学性能测试结果表明,添加改性碳纤维能提高复合材料的储能模量,增强复合材料的刚性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号