首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用混料设计试验方法研究了焦磷酸哌嗪(PAPP)、蒙脱土(MMT)和三聚氰胺聚磷酸盐(MPP)三组分复配阻燃剂在聚酰胺6(PA6)材料中的阻燃性能,通过极限氧指数、垂直燃烧级数(UL94)、微型燃烧量热仪(MCC)和热失重(TG)分析研究了不同配方对材料阻燃性能、燃烧性能的影响,优化了阻燃剂配方。结果表明:PAPP的质量分数为60.5%,MMT的质量分数为9.0%,MPP的质量分数为30.5%,该配方阻燃PA6材料的极限氧指数(体积分数)为39.5%,达到UL94 V-0(1.6 mm)级,阻燃剂在材料表面形成连续致密的炭层,700℃时残炭质量增加约10倍,有效抑制了材料的降解,显著降低燃烧过程中的热释放量。  相似文献   

2.
制备了一种双金属协效阻燃剂(FeCo-MOF),研究了二乙基次膦酸铝(ALPi)/三聚氰胺聚磷酸盐(MPP)/FeCo-MOF协效阻燃聚对苯二甲酸丁二醇酯/聚丙烯(PBT/PP)复合材料的性能。结果表明:当ALPi/MPP/FeCo-MOF的质量比为13.00∶6.50∶0.60时,阻燃PBT/PP复合材料的极限氧指数为32%,UL-94垂直燃烧阻燃等级为V-0级,800℃时残炭率达8.97%。  相似文献   

3.
利用硅烷偶联剂KH550对季戊四醇磷酸酯(PEPA)进行表面改性,得到Si-PEPA,将其与三聚氰胺聚磷酸盐(MPP)复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)进行阻燃改性。研究了KH550改性PEPA对PP/IFR体系阻燃、耐水和力学性能的影响。利用极限氧指数(LOI)仪、垂直燃烧(UL94)仪、锥形量热(CONE)仪对阻燃PP的燃烧性能进行测试,结果表明,当IFR的添加量为20%时,PP/MPP/Si-PEPA体系可以达到UL94 V-0级,氧指数达到32.5%,最大热释放速率(PHRR)和总热释放量(THR)都较PP/MPP/PEPA体系有明显降低。热重分析(TGA)显示,经KH550处理后,PP/IFR材料的热稳定性显著提高。经70℃热水浸泡72 h后,PP/MPP/Si-PEPA材料仍然可以通过UL94 V-1级。同时,KH550对PEPA的表面处理也提高了PP/IFR材料的力学强度。  相似文献   

4.
研究了不同配比二乙基次膦酸铝(ADP)和三聚氰胺聚磷酸盐(MPP)的膨胀阻燃剂(IFR)对乙烯-醋酸乙烯酯共聚物(EVA)阻燃性能的影响。结果表明:ADP/MPP对EVA阻燃性影响很大,当IFR质量分数达到40%、ADP与MPP质量比2/1时,阻燃EVA体系阻燃效果最好,极限氧指数达30%,UL-94达到V-0级。研究了阻燃EVA体系的热分解特性,同时使用扫描电镜和拉曼光谱对材料燃烧后的残渣膨胀层进行了表征。结果表明,当IFR质量分数达到40%、ADP与MPP的质量比为2/1时,残炭量达18%,形成的炭层具有好的隔热、隔氧效果。  相似文献   

5.
采用熔融共混技术,将二乙基次膦酸铝(ADP)引入聚乳酸(PLA)中,制备了一系列阻燃聚乳酸复合材料(FR-PLA)。在此基础上,采用热重分析、极限氧指数、UL 94垂直燃烧、微型量热测试研究了二乙基次膦酸铝对阻燃聚乳酸复合材料热稳定性、阻燃性能以及燃烧性能的影响。结果表明,ADP可以有效提高复合材料的阻燃性能,30 %(质量分数,下同)的ADP使得PLA/ADP30通过UL 94 V-0级别,极限氧指数达到31.6 %(体积分数,下同); ADP使得阻燃PLA复合材料的初始分解温度降低,但明显提高复合材料的成炭性; ADP使得复合材料的热释放速率峰值明显下降,PLA/ADP30热释放速率峰值为290 W/g,相对于PLA下降37.1 %,明显降低复合材料的火灾危险性。  相似文献   

6.
《塑料科技》2017,(4):113-116
以磷酸及哌嗪为起始原料制备了二磷酸哌嗪,然后经缩聚得到焦磷酸哌嗪(PPAP)。采用红外光谱对产物PPAP的结构进行了表征,并通过热重分析研究了PPAP的热稳定性及成炭性能。然后将PPAP与三聚氰胺按9:1的质量比复配后添加到环氧树脂(EP)中,并以间苯二胺(PDA)为固化剂制备阻燃EP复合材料,通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能。结果表明:产物PPAP的起始热分解温度为262℃,残炭率(800℃)为16.4%,表明PPAP具有良好的热稳定性及成炭性能。当复合阻燃剂的总添加量仅为6%时,材料即可通过UL 94V-0级垂直燃烧测试,同时其LOI达到32.1%,表明PPAP/三聚氰胺阻燃体系对EP具有良好的阻燃作用。  相似文献   

7.
采用氧化铝(Al2O3)为导热填料、氢氧化镁[Mg(OH)2]为阻燃填料,以低密度聚乙烯(PE-LD)和乙烯醋酸乙烯共聚物(EVA)为基体树脂制备导热阻燃复合材料。通过导热性能测试、燃烧行为表征(极限氧指数和垂直燃烧测试)以及热重分析研究了PE LD/EVA/Al2O3/Mg(OH)2复合材料的导热性能、阻燃性能及热稳定性。结果表明,含有50份Al2O3及50份Mg(OH)2的复合材料,在PE-LD/EVA质量比为1/1时,热导率可达到1.21 W/m·K;材料的阻燃性能及热稳定性都随 EVA 含量的增加而增大,极限氧指数从27.0 % 提高到31.5 %,UL 94 垂直燃烧从无等级提高到V-0级,残炭率从46.5 %提高到57.7 %。  相似文献   

8.
将季戊四醇磷酸酯(PEPA)和三聚氰胺聚磷酸盐(MPP)复配成一种膨胀型阻燃剂(IFR),用于对长玻纤增强聚丙烯(LGFPP)进行阻燃。采用极限氧指数测试、垂直燃烧测试、扫描电子显微镜观察、热重分析、力学性能测试等方法探讨了该IFR组成对LGFPP的阻燃性能、热稳定性能以及力学性能的影响。结果表明,IFR的总添加量为20%,当PEPA与MPP质量比为11∶9时,复配阻燃效果最佳,阻燃LGFPP的极限氧指数值为26.1%,UL–94燃烧等级达到V–0级;生成的炭层致密、连续性好且稳定;阻燃LGFPP表现出较好的热稳定性与力学性能。  相似文献   

9.
以双酚A型苯并嗪(BOZ)为成炭协效剂,二乙基次磷酸铝(ADP)为阻燃剂,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、SEM以及TGA等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加占体系质量分数0.3%BOZ和质量分数7.7%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11 MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

10.
以聚酯(PET)为树脂基体,采用阻燃剂三聚氰胺聚磷酸盐(MPP)与二乙基次膦酸铝(ADP)复配制备出MPP/ADP-PET阻燃热封膜,研究了2种阻燃剂配比对无卤阻燃PET热封膜的力学性能和阻燃性能的影响规律。结果表明,MPP与ADP复配阻燃的PET热封膜的力学性能及阻燃性能均优于单一MPP阻燃的PET热封膜。当MPP∶ADP质量比分别为8∶2、6∶4和5∶5的复配阻燃PET热封膜时,胶对胶贴合强度均远大于30 N/25 mm,且具有可断性,胶对导线粘接力都大于0.3 N/0.3mm,且极限氧指数为25.7%~27.7%,垂直燃烧水平均达到了UL-94 V-1级。  相似文献   

11.
以三聚氰胺和磷酸盐为原料,通过简单、节能、环保的合成方法制备了一种具有高效阻燃效果的三聚氰胺聚磷酸盐复合阻燃剂(MPP)。通过傅里叶变换红外光谱(FTIR)对得到的MPP进行了表征,并通过缩合过程中氨的释放导致的失重来确定其转化率。采用该合成方法制备的MPP对玻璃纤维增强尼龙66进行了阻燃改性。进行了实际的阻燃试验,包括UL94垂直燃烧试验和极限氧指数测量,与现有的商用MPP系统进行了比较。  相似文献   

12.
以聚酰胺(PA) 6为基体材料,添加二乙基次膦酸铝(ADP)、三聚氰胺氰尿酸盐(MCA)为阻燃剂,通过熔融共混制备无卤阻燃PA6复合材料。采用水平垂直燃烧仪、氧指数测定仪、万能材料试验机以及热重分析仪研究了ADP和MCA用量对无卤阻燃PA6阻燃性能、力学性能、热降解行为的影响,并采用扫描电子显微镜观察了燃烧后炭层的形貌,探讨了ADP与MCA间的协效阻燃作用。结果表明,制备的阻燃PA6复合材料均能达到UL94 V–0阻燃级别;当ADP添加量为18%时,极限氧指数(LOI)可达33.3%;当添加14% ADP时,ADP/MCA复配阻燃体系的LOI值保持在31%以上;MCA对ADP产生协效阻燃作用,MCA的加入使得热分解温度降低,加速了PA6在燃烧时的成炭,改善了炭层结构,并使PA6具有较好的力学性能。  相似文献   

13.
研究了不同质量比的氢氧化铝(ATH)和氢氧化镁(MH)对乙烯-醋酸乙烯共聚物(EVA)燃烧性能的影响,通过极限氧指数测试、垂直燃烧测试、热失重分析和锥形量热测试研究了EVA/ATH/MH复合材料的阻燃性能和热稳定性。结果表明,固定ATH和MH的添加量为60%(质量分数,下同),ATH/MH=2/1(质量比,下同)时,EVA/ATH/MH复合材料的阻燃性能最好,极限氧指数从18.3%提高到34.3%,达到UL 94V-2级别,热释放速率和热释放总量均有明显下降。  相似文献   

14.
通过全水发泡技术制备硬质聚氨酯泡沫/三聚氰胺聚磷酸盐(RPUF/MPP)复合材料,并对其泡孔形貌、热稳定性、阻燃性能、烟释放特性进行研究,结果表明,RPUF/MPP复合材料初始分解温度与纯样相比,升高了18~26℃,热稳定性明显提升;50份MPP使复合材料极限氧指数达到24.4%,垂直燃烧达到UL 94 V-0级。RPUF/MPP50热释放速率峰值和总热释放仅为139 W/g和16.7 kJ/g,与纯样相比,分别降低了32.5%和28.3%。经过MPP改性,RPUF/MPP50最大烟密度及烟密度等级分别降低至32.10%和19.56。炭渣分析表明,MPP可以有效促进RPUF/MPP复合材料燃烧过程中致密炭层的形成,且炭层中石墨化成分比例明显提高,有利于其阻燃性能的提升。研究表明,MPP可以显著提升硬质聚氨酯泡沫火灾安全性能。  相似文献   

15.
将低卤阻燃剂、聚磷酸盐、三聚氰胺氰尿酸盐、抗氧剂、抗铜剂、聚丙烯按一定比例制成新型轻质环保阻燃聚丙烯。采用极限氧指数(LOI)测试、垂直燃烧测试、灼热丝起燃温度测试、可燃性指数测试、热氧老化测试、抗铜老化测试、力学性能测试、耐析出测试等测试方法研究了该阻燃聚丙烯材料。研究表明,溴盐阻燃剂1%、聚磷酸盐1.5%、三聚氰胺氰尿酸盐3%、抗氧剂0.3%、抗铜剂0.2%、聚丙烯94%时,可使聚丙烯(PP)的阻燃等级达到UL94 V-2级(1.6 mm),极限氧指数达到36%,同时保持较好的力学性能,热氧老化3 000 h不粉化,具有良好的抗铜效果,750℃不起燃,GWFI960℃(材料的可燃性指数能够到达960℃),材料在注塑生产过程中不析出。材料以优异的性能替代阻燃聚碳酸酯(PC)、阻燃丙烯腈-丁二烯-苯乙烯(ABS)广泛地应用于电子电器、电工、家电领域。  相似文献   

16.
将甲基磷酸二甲酯(DMMP)用于聚甲基丙烯酸甲酯材料阻燃,并通过物理交联和化学交联改性提高阻燃材料耐热稳定性和物理性能。采用极限氧指数(LOI)、UL94、锥型量热测试(CCT)研究复合材料阻燃性能和燃烧行为。研究结果表明,当DMMP质量分数为25%时,阻燃材料的极限氧指数达到24.6%,垂直燃烧性能达到UL94 V-0级。化学交联剂EGDMA和物理交联剂甲基丙烯酸甲酯(MAA)质量分数分别为6%时,复合材料具有优异的耐热稳定性、物理性能和透光性能。此方法制备的阻燃亚克力浇筑板材料具有较强工业生产和实际应用价值。  相似文献   

17.
《塑料科技》2015,(6):89-93
以新型成炭剂聚对苯二甲酰乙二胺(PETA)和聚磷酸铵(APP)复配制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/APP/PETA复合材料,通过极限氧指数法和垂直燃烧法表征了复合材料的阻燃性能,通过热失重分析仪(TGA)和扫描电镜(SEM)分析了复合材料的热稳定性能和残炭表面形貌。结果表明:APP与PETA复配(IFR)后可以极大地提高EVA的阻燃性能,EVA/APP/PETA(质量比70/25/5)体系极限氧指数(LOI)达到39%,较纯EVA提高了88.4%,UL 94测试为V-0级别;EVA/APP/PETA复合材料在600℃下的残炭率达到了42%,较纯EVA残炭率高37%。SEM表明:30%IFR(APP与PETA质量比5:1)的加入提高了样品残炭表面致密性。  相似文献   

18.
采用二乙基次膦酸铝(ADP)与三聚氰胺聚磷酸盐(MPP)复配填充三元乙丙橡胶(EPDM),制备了EPDM阻燃材料,研究了ADP/MPP填充量及配比对EPDM燃烧性能及力学性能的影响。结果表明,ADP与MPP复配使用,可提高EPDM的阻燃性能,二者具有协同作用;当二者总添加量为30份、质量比为2∶1时,材料的极限氧指数可达到36%,最大热释放速率下降50.2%,总释放热降低25.9%,总生烟量降低22.3%,且EPDM的力学性能能够满足使用要求,拉伸强度为19.5 MPa,扯断伸长率为427%,邵尔A硬度为78,300%定伸应力为10.3 MPa。  相似文献   

19.
研究了膨胀型阻燃剂三聚氰胺聚磷酸盐(MPP)和季戊四醇(PER)对PP阻燃性能的影响。采用垂直燃烧测试仪、锥形量热仪和扫描电子显微镜进行了PP/MPP/PER复合材料的阻燃性能、残碳形貌分析。结果表明,MPP与PER的质量比为3∶2时,阻燃剂总质量分数为25%就能达到UL94V-0等级,阻燃效果最好。  相似文献   

20.
《塑料》2017,(4)
以二乙基次膦酸铝(ADP)为阻燃剂,三聚氰胺聚磷酸盐(MPP)和氧化铈(CeO_2)为阻燃协效剂制备了无卤阻燃长玻纤增强尼龙66(LGF/PA66)复合材料。当LGF/PA66/ADP/MPP/CeO_2质量比为30/55/10/3/2时,制备的复合材料垂直燃烧可以达到UL-94 V-0等级。扫描电镜和锥形量热仪分析测试表明:MPP通过气相阻燃可以有效地抑制玻纤的灯芯作用,CeO_2可以催化PA66成炭,使炭层更致密,同时降低了最大热释放速率,具有良好的阻燃协效作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号