首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In welded plate structures, fatigue cracks may initiate at the intersections between the flanges of longitudinal stiffeners and the web-stiffener attached to a transverse girder. The weld-toe cracks may initiate and propagate in the flange of the longitudinal stiffener, while in certain cases they may initiate from the root of the fillet weld resulting in the separation of the welded attachment from the flange. In order to distinguish such a morphological change of crack growth behavior, series of fatigue tests have been carried out, and the morphological variation of these fatigue cracks are successfully identified in terms of the normal and shear stress distribution acting along the fillet weld between the flange and the attachment.  相似文献   

2.
Stress intensity factor solutions for semi-elliptic surface and quarter-elliptic corner cracks emanating from a semi-circular notch in a tension specimen are presented. A threedimensional finite-element analysis in conjunction with the equivalent domain integral was used to calculate stress intensity factors (SIF). SIF solutions for surface or corner crack (crack length to depth ratio of 2) at a notch are presented for a wide range of crack sizes and notch radii. Results showed that the SIF are larger for larger crack lengths and for larger notch radii. The SIF are nearly constant all along the crack front for deep surface cracks and for all corner cracks analysed.  相似文献   

3.
This paper reports a study of fatigue crack growth and coalescing behaviour at semi-elliptical cracks in the stress concentration region of steel plates with fillet shoulders or fillet welds. Fatigue tests were carried out on machined plate specimens with a fillet geometry similar to a fillet welded joint. These specimens were notched and precracked to provide single and multiple coplanar semi-elliptical surface cracks at the fillet toe region. Finite element stress analysis results were used to obtain approximate Mk factors (i.e.: stress concentration magnification factors) for the fillet toe geometry with a semi-elliptical surface crack. An analytical model was developed to simulate crack shape development and growth to failure in the case of multiple coplanar semi-elliptical cracks. In this model, a simple crack coalescing procedure is applied to merge coplanar cracks when they meet by recharacterising the coplanar cracks into a single semi-elliptical crack. Alternative crack growth laws were investigated and comparisons made between actual and predicted shape developments and lives.  相似文献   

4.
Abstract— Weld toe magnification factors are widely used in the evaluation of stress intensity factors for cracks in welded structures. Traditionally, the weld magnification factor has been determined from 2-D plane strain models containing edge cracks. However, it has long been recognised that a semi-elliptical weld toe crack cannot be accurately represented by a 2-D approximation due to the 3-D nature of the geometry. As a consequence, some recent research has been carried out using 3-D numerical modelling, which highlights the limitations of the 2-D approach. Nevertheless, 3-D solutions are still scarce and are of limited validity due to the difficulties associated with creating the numerical models. This paper reports the most extensive 3-D numerical investigation of semi-elliptical cracks in T-butt geometries to date. Based on the numerical results, new and accurate equations for weld magnification factors were derived, which quantify the 3-D effects present and emphasise the importance of the attachment. The results obtained from these equations are then used in an assessment of existing solutions.  相似文献   

5.
In welded components, particularly those with complex geometrical shapes, evaluating stress intensity factors is a difficult task. To effectively calculate the stress intensity factors, a weld toe magnification factor is introduced that can be derived from data obtained in a parametric study performed by finite element method (FEM). Although solutions for the weld toe magnification factor have been presented, these are applicable only to non‐load‐carrying cruciform or T‐butt joints, due possibly to the requirement of very complicated calculations. In the majority of cases for various welded joints, the currently used weld toe magnification factors do not adequately describe the behaviour of weld toe cracks. In this study, the weld toe magnification factor solutions for the three types of welded joints such as cruciform, cover plate and longitudinal stiffener joints were provided through a parametric study using three‐dimensional finite elements. The solutions were formed with exponents and fractions that have polynomial functions in terms of a/c and a/t – that is, crack depths normalised by corresponding half crack lengths and specimen thickness. The proposed weld toe magnification factors were applied to evaluate the fatigue crack propagation life considering the propagation mechanisms of multiple‐surface cracks for all welded joints. It showed good agreement within a deviation factor of two between the experimental and calculated results for the fatigue crack propagation life.  相似文献   

6.
Three‐dimensional (3D) opening mode stress intensity factors (SIFs) for structural steel‐welded ‘T’ details were investigated by the finite element method. A 3D shape‐dependent correction factor is proposed for semi‐elliptical surface cracks. The aspect ratio (a/c) of a semi‐elliptical crack plays a key role in the approximation of 3D‐SIF values, and in the present study, it was estimated for a 3D crack analysis. The estimated 3D‐SIF was determined through a correlation between the a/c ratio and the two‐dimensional SIF for semi‐elliptical cracks in the thickness direction adjacent to the web‐flange junction of a welded ‘T’. The resulting equation can be used to estimate the 3D‐SIF values from the two‐dimensional SIF without much ambiguity.  相似文献   

7.
The goal of this investigation was to study the effect of local geometrical variations of the weld on the fatigue strength. Therefore the fatigue behaviour of non-load-carrying cruciform fillet welded joint under tensile loading has been studied parametrically. Several two-dimensional (2D) finite element models of the joint were analysed using plane strain linear elastic fracture mechanics (LEFM) calculations in order to get the magnification function Mk. A maximum tangential stress criterion was used to predict the crack growth direction under mixed mode KI-KII conditions. The derived Mk solution was then applied both for continuous weld toe cracks and also for semi-elliptical toe cracks at the deepest point of the crack front. An experimental crack aspect ratio development curve was used for propagating semi-elliptical cracks. The as-welded condition was assumed with the result that no crack initiation period was considered and stress ranges were fully effective. The Paris crack growth law was used to predict the growth rate. The effects of weld toe radius, flank angle and weld size on the fatigue strength were systematically studied. Finally, predicted fatigue strength values corresponding to different assumed crack sizes were compared with the available test results.  相似文献   

8.
Due to its simplicity, the least-squares method provides an efficient means to evaluate the stress intensity factors (SIFs) of cracks in complicated structures. This paper demonstrates numerical and experimental applications of the least-squares method to study mode-II SIFs of double fillet welded lap joints. In the numerical application, double fillet welded lap joints with different geometric parameters, including overlap length, weld leg size, plate thickness and plate length, were systematically analysed by the finite-element method combined with the least-squares method. The computed SIF results were then employed to develop the general formulae of the shearing fracture mode (mode-II) stress intensity factors. To validate the numerical results, three double fillet welded lap joint specimens were tested by a non-contact optical experiment using a common digital camera and a proposed image processing scheme. The measured crack shearing displacements near the crack tip were substituted into the least-squares procedure to obtain the SIFs of the specimens. The numerical and experimental results were in good agreement with the existing numerical results for double fillet welded lap joints provided in the handbook (Murakami, 1987). The non-contact optical experiment makes the field measurement of SIFs possible, which is very useful for fracture analysis or fatigue evaluation of structures like steel bridges, naval structures and offshore structures.  相似文献   

9.
The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. It is assumed that it reflects the average stress environment near the crack edge. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts.  相似文献   

10.
In the Notch Stress Intensity Factor (N‐SIF) approach the weld toe region is modelled as a sharp V‐shaped corner and local stress distributions in planar problems can be expressed in closed form on the basis of the relevant mode I and mode II N‐SIFs. Initially thought of as parameters suitable for quantifying only the crack initiation life, N‐SIFs were shown able to predict also the total fatigue life, at least when a large part of the life is spent as in the propagation of small cracks in the highly stressed region close to the notch tip. While the assumption of a welded toe radius equal to zero seems to be reasonable in many cases of practical interest, it is well known that some welding procedures are able to assure the presence of a mean value of the weld toe radius substantially different from zero. Under such conditions any N‐SIF‐based prediction is expected to underestimate the fatigue life. In order to investigate the degree of conservatism, a total of 128 fillet welded specimens are re‐analysed in the present work by using an energy‐based N‐SIF approach. The local weld toe geometry, characterised by its angle and radius, has been measured with accuracy for the actual test series. The aim of the work is to determine if the N‐SIF‐based model is capable of taking into account the large variability of the toe angle, and to quantify the inaccuracy in the predictions due to the simplification of setting the toe radius equal to zero.  相似文献   

11.
国内外学者对钢结构的焊缝连接在名义正应力荷载条件下的疲劳性能进行了广泛的研究,但是所见文献中对焊缝在名义剪切应力下的疲劳性能研究较少。为此,以Q345B钢材制作了原状处理的侧面和正面角焊缝连接的2组板材试件,采用高频疲劳试验机进行常温剪切疲劳试验,并进行数据拟合。试验结果发现:该文试验中的2类焊接试件的疲劳试验结果具有非常大的离散性。由中国钢结构规范GB 50017-2017得到的200万次下的疲劳强度值比侧面角焊缝试验拟合曲线计算得到的值小,两者曲线吻合较好;正面角焊缝试验所得疲劳强度高于各国规范;正面角焊缝接头抗剪切疲劳强度高于侧面角焊缝接头;正面角焊缝疲劳破坏形式为贯通焊缝裂纹,侧面角焊缝为焊趾向热影响区延伸裂纹。研究结果表明:现有中国规范评价侧面和正面角焊缝剪切性能都偏于安全,但是使用规范推荐的曲线评估侧面角焊缝剪切疲劳性能较为合适。  相似文献   

12.
The fatigue strength of rolled beams with stiffeners welded to the web was examined. The state of residual stress in these beams was varied by different cooling and straightening processes. Parallel series of tests were carried out both on plate specimens with corner-notches, simulating the edge notches in the beam-flange tip, and on fillet welded specimens. These test results were analysed using the fracture mechanics concepts of stable crack growth. A new fracture mechanics model for cracks originating from notches is proposed. This is based on the concept that the cyclic plastic zone size at the root of a notch determines the equivalent size of the notch as a fatigue crack. With this model, the severity of notches as well as their size can be taken into account to describe the initial flaw conditions. With the initial crack size estimated, a theoretical crack-growth equation was derived from the fatigue test data of rolled beams and notched plates. The analysing method together with the derived relationship was applied for the evaluation of the fatigue strength of welded beams and transverse fillet welds. The effect of residual stresses on fatigue behavior of these beams and plate specimens was also estimated by assuming an additional effect of the maximum stress on the theoretical crack-growth equation.  相似文献   

13.
A study has been made of the fatigue behavior of fillet welded ASTM A515 steel. As-welded and stress-relieved skip fillet weld specimens were tested under pulsed tension and altering cyclic load to determine stress-life and crack propagation behavior. Crack initiation and propagation features were determined from sectioned surfaces. All fatigue cracks were semi-elliptic and initiated from weld end toes. The length/depth ratio was approximately constant during propagation. There was no consistent effect of tensile residual stress on fatigue life under pulsed tension but there was a detrimental effect under alternating loads. An equivalent crack model has been proposed to quantify the stress concentration effect at the crack initiation site based on the application of the Paris equation. The test results show that the equivalent crack can give a reasonable prediction of the fatigue life of a welded structure and is a potentially convenient tool in fatigue design.  相似文献   

14.
王元清  顾浩洋  廖小伟 《工程力学》2020,37(1):73-79,134
国内外学者对钢结构的焊缝连接在常温下的疲劳性能进行了广泛的研究,但是所见文献中对构造细节在低温下的疲劳性能研究较少。为此,以Q345B钢材制作了原状处理的侧面和正面角焊缝连接的两组板材试样,采用高频疲劳试验机在0℃、-20℃、-40℃下进行低温疲劳试验,并进行数据拟合。试验结果发现:对于侧面角焊缝试样而言,低温会提高构造细节的疲劳寿命,而低温对正面角焊缝试样的影响并不明显。低温下的正面角焊缝抗疲劳强度高于侧面角焊缝。正面角焊缝疲劳破坏形式为贯通焊缝裂纹,侧面角焊缝为焊趾向热影响区延伸裂纹。研究结果表明:低温对于不同的构造细节形式的节点疲劳寿命的影响没有统一的结论,有待更多试验进行研究并分析。  相似文献   

15.
Existing theories for the growth of cracks at weld toes have proved difficult to verify because of a lack of experimental proof at short crack depths and slow growth rates. Arbitrary initial defect sizes have been employed in life calculations coupled with approximate two-dimensional stress analyses. In this study, the fatigue performance of a stress relieved fillet weld is determined by both theory and experiment. Crack growth results for shallow (less than 1 mm depth) elliptical cracks at weld toes are used to test an elastic expression for stress intensity using a correction factor from a three-dimensional stress analysis. No evidence of higher than expected growth rates, observed by others for very short cracks and cracks in notch plastic zones, is apparent. Integration of a growth law that includes the threshold stress intensity factor provides fatigue life predictions for various stress ratios and from experimentally measured defect depths. Needle peening the weld toe improves the fatigue life by retarding crack growth up to 1 mm below the weld toe.  相似文献   

16.
This study investigates the fatigue crack‐driving force, measured by the linear‐elastic stress‐intensity factors (SIFs), for a surface crack at the root of the welds in a thick‐walled, circular hollow section (CHS) V‐shape joint, typically installed in modern offshore jack‐up platforms. The primary (chord) member of the V‐joint consists of two half CHSs welded to both sides of a thick rack plate, while the secondary (brace) member adopts thick‐walled CHSs. The surface‐breaking crack considered in this study locates at the interface between the rack plate and the weld metal joining the half CHS, and represents an initial flaw introduced by lack of penetration in the welding procedure. The finite‐element model incorporates a very detailed, local crack‐front mesh in a global continuous mesh through a mesh‐tying procedure, which ensures displacement continuity between the independent master surface and the dependent slave surface. A simple plate model verifies the mesh‐tying procedure in computing the linear‐elastic stress‐intensity factors for two remote loading conditions. The computation of the stress‐intensity factors employs a linear‐elastic interaction integral approach. The comparison of the computed SIF values with a previous experimental measurement for a CHS T‐joint verifies the accuracy and feasibility of the interaction integral approach in computing SIF values for surface cracks in welded tubular connections. Subsequent numerical analysis on the gapped V‐joints examines the mixed‐mode SIF values for different loading conditions and includes an array of practical joint geometric parameters and crack sizes. The nondimensional mode I stress‐intensity factors generally increases with the following variations in the joint geometric parameters: an increase in the chord radius to the wall thickness ratio (γ=d0/2t0) , an increase in the brace diameter to the chord diameter ratio (β=d1/d0) , a decrease in the crack depth ratio (a/t) or an increase in the crack length c. The current study identifies a practical group of V‐joints that requires detailed treatment in the fatigue assessment procedure. These V‐joints adopt a large β ratio and demonstrate high mode‐mixity angles [ψ= tan?1(KII/KI)] with correspondingly high mode I and mode II stress‐intensity factors.  相似文献   

17.
This paper investigates the use of the JV parameter, a path-independent integral, for the evaluation of the elastic local stress parameters in welded details and for the estimation of their fatigue life.First, the stress intensity factors (SIF) of an embedded crack lying along the bisector of a sharp V-notch is calculated by means of the JV without modelling the crack and by keeping the same external load and boundary conditions of the cracked model. Furthermore, the notch stress intensity factors (NSIFs) of the welds can be calculated after a post processing procedure of FE analysis with the advantage of using coarse meshes.Second, a correlation between the fatigue life of welded details and the JV parameter is shown. In fact, careful analysis of the fracture surface of fillet welds taken from literature and of new fatigued joints indicates that the first stage of fatigue crack propagation follows the bisector line of the local V-notch as only mode I would be present. Therefore, since the JV evaluated on a suitable integration path represents the SIF of an embedded crack lying along the bisector, the JV is used for the fatigue life assessment of welded details. The critical characteristic length of a suitable integration path for welded joints made of steel and aluminium alloys has been calculated. These critical characteristic lengths were used for the evaluation of two fatigue general scatter bands, mainly based on fatigue data of non-load-carrying cruciform joints characterised by a V-notch angle of 135°. Further, fatigue life data of steel and aluminium alloy welded connections have also been investigated when both mode I and mode II loadings are singular.  相似文献   

18.
An analysis of fatigue cracks in fillet welded joints   总被引:1,自引:0,他引:1  
In most of the lower fatigue strength welded joints failure occurs by the propagation of a semi-elliptical surface crack which initiates at the weld toe. In order to analyse the progress of these cracks using fracture mechanics techniques, the solution for the stress intensity factor, K, is required. Fatigue cracks in most welded joints adopt shapes which give low a/2c values (up to approximately 0.3) while solutions in the literature are more applicable to a/2c values close to 0.5. Therefore, results in the literature were used to estimate the stress intensity factor for cracks with low a/2c values. Furthermore, the effect of the weld stress concentration factor was incorporated in the solution. The accuracy of the resulting solution was confirmed by using it to determine ΔK values of weld toe cracks for which crack propagation data were available. The results agreed with the expected da/dN vs. ΔK scatterband obtained from centre-notched specimens.  相似文献   

19.
Abstract— A single-crack evolution model with eight degrees of freedom and an isotropic Paris law constant was used to simulate fatigue crack growth at the surface of a plate, and from the toe of a transverse non-load-bearing fillet weld in a T-joint. A planar crack was assumed. In the simulated cases fatigue cracks usually propagate through the plate thickness under the dominant effect of the mode I stress system. The crack front shape was modelled as a broken line. The straight sided crack tip elements were tangential to the direction of an initial elliptical crack front. It was found that the simple eight degrees of freedom model performed well and the predicted aspect ratio development was in good agreement with experimental data.  相似文献   

20.
The presence of different microstructures along the precrack fatigue front has an important effect on the critical crack tip opening displacement (CTOD). This value is the relevant parameter for safe service of a welded structure. For a specimen with a through-thickness notch partly in the weld metal, partly in the heat-affected zone, and partly in the base material (i.e., using the composite-notched specimen), fracture behavior strongly depends on the proportion of ductile base material, size, and distribution of the mismatching factor along the vicinity of the crack front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号