首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in functionally graded piezoelectric materials under the anti-plane shear loading for the permeable electric boundary conditions. To make the analysis tractable, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By means of the Fourier transform, the problem can be solved with the help of a pair of dual-integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved by use of the Schmidt method. Numerical examples are provided. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present near the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips, thus allows us to using the maximum stress as a fracture criterion. The finite hoop stresses at the crack tips depend on the crack length, the functionally graded parameter and the lattice parameter of the materials, respectively.  相似文献   

2.
In this paper, the dynamic behavior of two parallel symmetric cracks under harmonic anti-plane shear waves is studied using the non-local theory. For overcoming the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the distance between two parallel cracks, respectively.  相似文献   

3.
In this paper, the behavior of a Griffith crack in a piezoelectric material under anti-plane shear loading is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with two pairs of dual integral equations. These equations are solved using Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present at the crack tip.  相似文献   

4.
In this paper, the effect of the lattice parameter of functionally graded materials on the dynamic stress fields near crack tips subjected to the harmonic anti-plane shear waves is investigated by means of non-local theory. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present near crack tips. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials.  相似文献   

5.
The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

6.
In this paper, the scattering of harmonic antiplane shear waves by a finite crack is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the first or the second integral equation method. Contrary to the classical elasticity solution, it is found that no stress singularity is presented at the crack tip. The non- local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary In this paper, the scattering of harmonic shear waves by two collinear symmetric cracks is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then, a set of triple integral equations is solved using a new method, namely Schmidt's method. This method is simple and convenient for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length.  相似文献   

8.
In this paper, the non-local theory of elasticity is firstly applied to obtain the behavior of two collinear cracks in functionally graded piezoelectric materials under anti-plane shear loading for permeable electric boundary conditions. To make the analysis tractable, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By means of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved by use of the Schmidt method. Numerical examples are provided. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present near the crack tips. The non-local elastic solutions yield finite stresses at the crack tips, thus allows us to use the maximum stress as a fracture criterion. The finite stresses at the crack tips depend on the distance between two collinear cracks, the functionally graded parameter and the lattice parameter of the materials, respectively.  相似文献   

9.
In this paper, the non-local theory solution of a Griffith crack in functionally graded piezoelectric materials under the anti-plane shear loading is obtained for the permeable electric boundary conditions, in which the material properties vary exponentially with coordinate parallel to the crack. The present problem can be solved by using the Fourier transform and the technique of dual integral equation, in which the unknown variable is the jump of displacement across the crack surfaces, not the dislocation density function. To solve the dual integral equations, the jump of the displacement across the crack surfaces is directly expanded in a series of Jacobi polynomials. From the solution of the present paper, it is found that no stress and electric displacement singularities are present near the crack tips. The stress fields are finite near the crack tips, thus allows us to use the maximum stress as a fracture criterion. The finite stresses and the electric displacements at the crack tips depend on the crack length, the functionally graded parameter and the lattice parameter of the materials, respectively. On the other hand, the angular variations of the strain energy density function are examined to associate their stationary value with locations of possible fracture initiation.  相似文献   

10.
In this paper, the scattering of harmonic waves by two collinear symmetric cracks is studied by use of non-local theory. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform is applied and a mixed boundary-value problem is formulated. The solutions are obtained by means of the Schmidt method. This method is more exact and more appropriate than Eringen's for solving this kind of problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of the incident wave.  相似文献   

11.
In this paper, the interaction of two collinear cracks in anisotropic elasticity materials subjected to an anti-plane shear loading is investigated by means of the nonlocal theory. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surface. To solve the triple integral equations, the displacement on the crack surface is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tip. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress hypothesis as a fracture criterion. The magnitude of the finite stress field depends on the crack length, the distance between two cracks and the lattice parameter of materials.  相似文献   

12.
The problem of an anti-plane Griffith crack moving along the interface of dissimilar piezoelectric materials is solved by using the integral transform technique. It is shown from the result that the intensity factors of anti-plane stress and electric displacement are dependent on the speed of the Griffith crack as well as the material coefficients. When the two piezoelectric materials are identical, the present result will reduce to the result for the problem of an anti-plane moving Griffith crack in homogeneous piezoelectric materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
By using the well-established integral transform methodology, the dynamic response of stress and electric displacement around a finite crack in an infinite piezoelectric strip are investigated under anti-plane impact. The dynamic intensity factors of stress and electric displacement are obtained analytically. The results show that the dynamic electric field will promote or retard the propagation of the crack at different stages of the loading process. On the other hand, the response of the electric field is coherent with the applied electric load and independent of the external mechanical load. The result obtained for the anti-plane impact of a cracked infinite piezoelectric ceramic can be regarded as a special case of the present work when the width of the strip tends to infinity.  相似文献   

14.
In the present paper, the dynamic behavior of a Griffth crack in the functionally graded piezoelectric material (FGPM) is investigated. It is assumed that the elastic stiffness, piezoelectric constant, dielectric permittivity and mass density of the FGPM vary continuously as an exponential function, and that FGPM is under the anti-plane mechanical loading and in-plane electrical loading. By using the Fourier transform and defining the jumps of displacement and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomial. Numerical examples are provided to show the effects of material properties on the stress and the electric displacement intensity factors.  相似文献   

15.
Summary. The dynamic behavior of a crack in a functionally graded piezoelectric material (FGPM) strip bonded to two half dissimilar piezoelectric material planes subjected to combined harmonic anti-plane shear wave and in-plane electrical loading was studied under the limited permeable and permeable electric boundary conditions. It was assumed that the elastic stiffness, piezoelectric constant and dielectric permittivity of the functionally graded piezoelectric layer vary continuously along the thickness of the strip. By using the Fourier transform, the problem can be solved with a set of dual integral equations in which the unknown variables are the jumps of the displacements and the electric potentials across the crack surfaces. In solving the dual integral equations, the jumps of the displacements and the electric potentials across the crack surfaces were expanded in a series of Jacobi polynomials. Numerical results illustrate the effects of the gradient parameter of FGPM, electric loading, wave number, thickness of FGPM strip and electric boundary conditions on the dynamic stress intensity factors (SIFs).  相似文献   

16.
In this paper the dynamic anti-plane problem for a functionally graded piezoelectric strip containing a central crack vertical to the boundary is considered. The crack is assumed to be electrically impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material gradient parameter and crack configuration on the dynamic response. With the permeable assumption, the electric impact has no contribution to the crack tip field singularity. With the impermeable assumption, the direction of applied electric impact loading plays a great role in the behavior of dynamic stress intensity factor, and the existence of electric load always enhances the crack propagation. However, the crack is easier to propagate under the negative electric load than that under the positive electric load.  相似文献   

17.
J. K. Du  Y. P. Shen  X. Wang 《Acta Mechanica》2002,158(3-4):169-183
Summary This paper presents an analysis of the scattering of anti-plane shear waves by a single piezo-electric cylindrical inclusion partially bonded to an unbounded matrix. The anti-plane governing equations for piezoelectric materials are reduced to Helmholtz and Laplacian equations. The fields of scattered waves are obtained by means of the wave function expansion method when the bonded interface is perfect. When the interface is partially debonded, the region of the debonding is modeled as an interface crack with non-contacting faces. The electric permeable boundary conditions are adopted, i.e. the normal electric displacement and electric potential are continuous across the crack faces. The crack opening displacement is represented by Chebyshev polynomials and a system of equations is derived and solved for the unknown coefficients.  相似文献   

18.
The dynamic behavior of two 3D rectangular permeable cracks in a transversely isotropic piezoelectric material is investigated under an incident harmonic stress wave by using the generalized Almansi's theorem and the Schmidt method. The problem is formulated through double Fourier transform into three pairs of dual integral equations with the displacement jumps across the crack surfaces as the unknown variables. To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the dynamic stress field and the dynamic electric displacement filed near the crack edges are obtained, and the effects of the shape of the rectangular crack, the characteristics of the harmonic wave, and the distance between two rectangular cracks on the stress and the electric intensity factors in a piezoelectric composite material are analyzed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper provides a comprehensive theoretical analysis of a finite crack propagating with constant speed along an interface between two dissimilar piezoelectric media under inplane electromechanical loading. The interface is modeled as a graded piezoelectric layer with spatially varying properties (functionally graded piezoelectric materials, i.e., FGPMs). The analytical formulations are developed using Fourier transforms and the resulting singular integral equations are solved with Chebyshev polynomials. Using a dielectric crack model with deformation-dependent electric boundary condition, the dynamic stress intensity factors, electric displacement intensity factor, crack opening displacement (COD) intensity factor, and energy release rate are derived to fully understand this inherent mixed mode dynamic fracture problem. Numerical simulations are made to show the effects of the material mismatch, the thickness of the interfacial layer, the crack position, and the crack speed upon the dynamic fracture behavior. A critical state for the electromechanical loading applied to the medium is identified, which determines whether the traditional impermeable (or permeable) crack model serves as the upper or lower bound for the dielectric model considering the effect of dielectric medium crack filling.  相似文献   

20.
A complete form of stress and electric displacement fields in the vicinity of the tip of an interfacial crack, between two dissimilar anisotropic piezoelectric media, is derived by using the complex function theory. New definitions of real-valued stress and electric displacement intensity factors for the interfacial crack are proposed. These definitions are extensions of those for cracks in homogeneous piezoelectric media. Closed form solutions of the stress and electric displacement intensity factors for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media are also obtained by using the mutual integral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号