首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques.  相似文献   

2.
Lidocaine injection is a common treatment for tendon injuries. However, the evidence suggests that lidocaine is toxic to tendon cells. This study investigated the effects of lidocaine on cultured tendon cells, focusing on the molecular mechanisms underlying cell proliferation and extracellular matrix (ECM) production. Tendon cells cultured from rat Achilles tendons were treated with 0.5, 1.0, or 1.5 mg/mL lidocaine for 24 h. Cell proliferation was evaluated by Cell Counting Kit 8 (CCK-8) assay and bromodeoxyuridine (BrdU) assay. Cell apoptosis was assessed by Annexin V and propidium iodide (PI) stain. Cell cycle progression and cell mitosis were assessed through flow cytometry and immunofluorescence staining, respectively. The expression of cyclin E, cyclin A, cyclin-dependent kinase 2 (CDK2), p21, p27, p53, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), type I collagen, and type III collagen were examined through Western blotting, and the enzymatic activity of MMP-9 was determined through gelatin zymography. Lidocaine reduced cell proliferation and reduced G1/S transition and cell mitosis. Lidocaine did not have a significant negative effect on cell apoptosis. Lidocaine significantly inhibited cyclin A and CDK2 expression but promoted p21, p27, and p53 expression. Furthermore, the expression of MMP-2 and MMP-9 increased, whereas that of type I and type III collagen decreased. Lidocaine also increased the enzymatic activity of MMP-9. Our findings support the premise that lidocaine inhibits tendon cell proliferation by changing the expression of cell-cycle-related proteins and reduces ECM production by altering levels of MMPs and collagens.  相似文献   

3.
Factor XIII (FXIII) is a transglutaminase that promotes thrombus stability by cross-linking fibrin. The cellular form, a homodimer of the A subunits, denoted FXIII-A, lacks a classical signal peptide for its release; however, we have shown that it is exposed on activated platelets. Here we addressed whether monocytes expose intracellular FXIII-A in response to stimuli. Using flow cytometry, we demonstrate that FXIII-A antigen and activity are up-regulated on human monocytes in response to stimulation by IL-4 and IL-10. Higher basal levels of the FXIII-A antigen were noted on the membrane of the monocytic cell line THP-1, but activity was significantly enhanced following stimulation with IL-4 and IL-10. In contrast, treatment with lipopolysaccharide did not upregulate exposure of FXIII-A in THP-1 cells. Quantification of the FXIII-A activity revealed a significant increase in THP-1 cells in total cell lysates following stimulation with IL-4 and IL-10. Following fractionation, the largest pool of FXIII-A was membrane associated. Monocytes were actively incorporated into the fibrin mesh of model thrombi. We found that stimulation of monocytes and THP-1 cells with IL-4 and IL-10 stabilized FXIII-depleted thrombi against fibrinolytic degradation, via a transglutaminase-dependent mechanism. Our data suggest that monocyte-derived FXIII-A externalized in response to stimuli participates in thrombus stabilization.  相似文献   

4.
5.
目的探讨淋巴细胞功能相关抗原1(LFA-1)在类风湿性关节炎形成中的作用。方法采用Ⅱ型胶原诱导小鼠关节炎模型,观察LFA-1基因敲除小鼠引流淋巴结T细胞增殖和细胞因子水平。结果LFA-1基因敲除小鼠在应用Ⅱ型胶原免疫后,引流淋巴结和关节局部Th1型细胞因子IFN-γ和IL-12p40mRNA水平明显低于野生型对照小鼠,Th2型细胞因子IL-4mRNA水平无明显变化。LFA-1基因敲除小鼠引流淋巴结来源的CD4+T细胞在体外受Ⅱ型胶原刺激后,其特异性增殖和细胞因子IFN-γ的产生也明显低于野生型对照小鼠。结论LFA-1基因缺失抑制了辅助性T细胞的活化和向Th1方向的分化,进而抑制关节炎的发生。  相似文献   

6.
7.
8.
Although the role of platelet-rich plasma (PRP) in tissue regeneration has been confirmed in many studies, the mechanism of this process is still not fully understood. Human keratinocytes (HaCaT) cells were used as an experimental model for studies on the effects of PRP on cell proliferation, migration, collagen biosynthesis, prolidase activity, and its expression and anabolic signaling. The activation of epidermal growth factor receptor (EGFR), β1-integrin, and insulin-like growth factor-1 receptor (IGF-1R) by PRP were investigated by western blot and immunocytochemistry. It has been found that PRP induced keratinocytes migration and proliferation through activation of cell cycle progression and EGFR downstream signaling. Similar biological effects were achieved by an addition to the culture medium of prolidase (PEPD), a ligand of EGFR (PRP is a rich source of PEPD–2 ng/mL). PRP-dependent stimulation of collagen biosynthesis was accompanied by an increase in the expression of NF-κβ, IGF-1R-downstream signaling proteins, and PEPD activity. The data suggest that PRP activates a complex of growth factors and adhesion receptors that stimulate cell proliferation, migration, and collagen biosynthesis. PRP induces PEPD-dependent human keratinocyte proliferation through activation of the EGFR receptor. Our study provides a novel mechanism of PRP-dependent wound healing.  相似文献   

9.
Adipose stem cells (ASCs) are reported to play a role in normal physiology as well as in inflammation and disease. The objective of this work was to elucidate inter-individual differences in growth, gene expression and response to inflammatory stimuli in ASCs from different donors. Human ASC1 (male donor) and ASC2 (female donor) were purchased from Lonza (Walkersville, MD). Cell proliferation was determined by the sulforhodamine B assay. After time-dependent treatment of ASCs with or without bacterial lipopolysaccharide (LPS), marker gene mRNAs for proliferation, steroid hormones, and xenobiotic and immune pathways were determined using RT-PCR, and secreted cytokine levels in media were measured using the Bio-Plex cytokine assay kit. ASCs from both donors expressed androgen receptors but not estrogen receptors. ASC2 had a 2-fold higher proliferation rate and a 6-fold higher level of proliferation marker Ki67 mRNA than ASC1. ASC2 exhibited significantly greater fold induction of TNF-α and CCL2 by LPS compared to ASC1. TNF-α and GM-CSF protein levels were also significantly higher in the LPS-induced ASC2 media, but IL-6 secretion was higher in the LPS-induced ASC1 media. Our findings suggest that inter-individual variability and/or possible sex differences exist in ASCs, which may serve as a key determinant to inflammatory responses of ASCs.  相似文献   

10.
目的观察血脂康对血管紧张素Ⅱ(AngⅡ)诱导的新生大鼠心肌成纤维细胞(CFs)增殖及胶原合成的影响,并探讨可能的分子机制。方法采用胰酶消化法分离培养Sprague-Dawley大鼠心肌成纤维细胞,建立AngⅡ诱导CFs增殖的模型,以MTT比色法和流式细胞仪检测细胞周期分析法观察血脂康对CFs数目和细胞周期的影响。AngⅡ及不同浓度血脂康作用48 h后,用天狼星红染色法检测培养上清中胶原的含量;ELISA法检测细胞培养上清液中TGF-β1蛋白表达;RT-PCR法检测胶原和TGF-β1 mRNA表达。结果AngⅡ对CFs增殖有明显促进作用,血脂康可明显抑制AngⅡ诱导的CFs增殖,且呈剂量依赖性;血脂康可增加G0/G1期细胞百分率,降低S、G2/M期细胞百分率,降低胶原含量、TGF-β1蛋白及胶原和TGF-β1 mRNA的表达。结论血脂康能抑制AngⅡ诱导的CFs增殖和胶原的产生,其作用可能是通过抑制TGF-β1表达实现的。  相似文献   

11.
Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC) is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP), p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma) were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD) with appropriate software (ModFit LT; BD). The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore). The mRNA levels of AFP relative to Alb(−): Alb(−), Alb(+), and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−)), and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(−) and p = 0.004 for Prionex), and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(−) and Prionex), and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+). More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+) than in Alb(−) (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−), Alb(+), Prionex, respectively). The same results were obtained in HepG2. Cell proliferation was inhibited in 5 g/dL albumin medium in both HepG2 cells and Hep3B cells in 24 h culture by counting cell numbers. The presence of albumin in serum reduces the phosphorylation of Rb proteins and enhances the expression of p21 and p57, following an increase in the G0/G1 cell population, and suppresses cell proliferation. These results suggest that albumin itself suppresses the proliferation of hepatocellular carcinoma.  相似文献   

12.
Various source-derived mesenchymal stem cells (MSCs) have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM), adipose tissue (AT), and umbilical cord blood-derived MSCs (UCB-MSCs) for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS)-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α), IL-6, and IL-8 via angiopoietin-1 (Ang-1). Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA), we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.  相似文献   

13.
14.
Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2.  相似文献   

15.
(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.  相似文献   

16.
Idiopathic pulmonary fibrosis (IPF) is caused by progressive lung tissue impairment due to extended chronic fibrosis, and it has no known effective treatment. The use of conditioned media (CM) from an immortalized human adipose mesenchymal stem cell line could be a promising therapeutic strategy, as it can reduce both fibrotic and inflammatory responses. We aimed to investigate the anti-inflammatory and anti-fibrotic effect of CM on human pulmonary subepithelial myofibroblasts (hPSM) and on A549 pulmonary epithelial cells, treated with pro-inflammatory or pro-fibrotic mediators. CM inhibited the proinflammatory cytokine-induced mRNA and protein production of various chemokines in both hPSMs and A549 cells. It also downregulated the mRNA expression of IL-1α, but upregulated IL-1β and IL-6 mRNA production in both cell types. CM downregulated the pro-fibrotic-induced mRNA expression of collagen Type III and the migration rate of hPSMs, but upregulated fibronectin mRNA production and the total protein collagen secretion. CM’s direct effect on the chemotaxis and cell recruitment of immune-associated cells, and its indirect effect on fibrosis through the significant decrease in the migration capacity of hPSMs, makes it a plausible candidate for further development towards a therapeutic treatment for IPF.  相似文献   

17.
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.  相似文献   

18.
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.  相似文献   

19.
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.  相似文献   

20.
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号