首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in protein structure technology such as affinity chromatography, high performance liquid chromatography (for protein and peptide isolation) and microsequencing have provided new opportunities for answering fundamental questions as well as providing new applications. For example, it has been recognized for many years that aging causes the accumulation of “abnormal” proteins in cells. The amount of these aged proteins in human cells is exceedingly small, and only through the use of microstructural analyses has it been possible to explore the properties of aged proteins. Such studies suggest that aged cells have a decreased ability to catabolize covalently modified proteins. High-sensitivity structural analyses also provide the opportunity to study the molecular basis of genetic diseases with small amounts of tissue or blood. Examples of the aplication of these new technologies include isolation of enzymes for therapeutic purposes such as digestion of herniated spinal discs and the debridement of burns and ulcers. The use of microencapsulated proteins and matrix-bound enzymes also has provided new application opportunities. For example, covalently bound lactase has been found to have bio-adhesive properties in the intestine and may be used for treatment of lactase insufficiency in persons who cannot tolerate milk or milk products.  相似文献   

2.
Autophagy is a major self-degradative process through which cytoplasmic material, including damaged organelles and proteins, are delivered and degraded in the lysosome. Autophagy represents a dynamic recycling system that produces new building blocks and energy, essential for cellular renovation, physiology, and homeostasis. Principal autophagy triggers include starvation, pathogens, and stress. Autophagy plays also a pivotal role in immune response regulation, including immune cell differentiation, antigen presentation and the generation of T effector responses, the development of protective immunity against pathogens, and the coordination of immunometabolic signals. A plethora of studies propose that both impaired and overactive autophagic processes contribute to the pathogenesis of human disorders, including infections, cancer, atherosclerosis, autoimmune and neurodegenerative diseases. Autophagy has been also implicated in the development and progression of allergen-driven airway inflammation and remodeling. Here, we provide an overview of recent studies pertinent to the biology of autophagy and molecular pathways controlling its activation, we discuss autophagy-mediated beneficial and detrimental effects in animal models of allergic diseases and illuminate new advances on the role of autophagy in the pathogenesis of human asthma. We conclude contemplating the potential of targeting autophagy as a novel therapeutic approach for the management of allergic responses and linked asthmatic disease.  相似文献   

3.
Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor’s interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.  相似文献   

4.
Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.  相似文献   

5.
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography–mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.  相似文献   

6.
Saliva is easy to access, non-invasive and a useful source of information useful for the diagnosis of serval inflammatory and immune-mediated diseases. Following the advent of genomic technologies and -omic research, studies based on saliva testing have rapidly increased and human salivary proteome has been partially characterized. As a proteomic protocol to analyze the whole saliva proteome is not currently available, the most common aim of the proteomic analysis is to discriminate between physiological and pathological conditions. The salivary proteome has been initially investigated in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease, and Sjögren’s syndrome. Otherwise, salivary proteomics studies in the dermatological field are still in the initial phase, thus the aim of this review is to collect the best research evidence on the role of saliva proteomics analysis in immune-mediated skin diseases to understand the direction of research in this field. The results of PRISMA analysis reported herein suggest that human saliva analysis could provide significant data for the diagnosis and prognosis of several immune-mediated and inflammatory skin diseases in the next future.  相似文献   

7.
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients’ proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.  相似文献   

8.
Proteomics is a crucial tool for unravelling the molecular dynamics of essential biological processes, becoming a pivotal technique for basic and applied research. Diverse bioinformatic tools are required to manage and explore the huge amount of information obtained from a single proteomics experiment. Thus, functional annotation and protein–protein interactions are evaluated in depth leading to the biological conclusions that best fit the proteomic response in the system under study. To gain insight into potential applications of the identified proteins, a novel approach named “Applied Proteomics” has been developed by comparing the obtained protein information with the existing patents database. The development of massive sequencing technology and mass spectrometry (MS/MS) improvements has allowed the application of proteomics nonmodel microorganisms, which have been deeply described as a novel source of metabolites. Between them, Nannochloropsis gaditana has been pointed out as an alternative source of biomolecules. Recently, our research group has reported the first complete proteome analysis of this microalga, which was analysed using the applied proteomics concept with the identification of 488 proteins with potential industrial applications. To validate our approach, we selected the UCA01 protein from the prohibitin family. The recombinant version of this protein showed antiproliferative activity against two tumor cell lines, Caco2 (colon adenocarcinoma) and HepG-2 (hepatocellular carcinoma), proving that proteome data have been transformed into relevant biotechnological information. From Nannochloropsis gaditana has been developed a new tool against cancer—the protein named UCA01. This protein has selective effects inhibiting the growth of tumor cells, but does not show any effect on control cells. This approach describes the first practical approach to transform proteome information in a potential industrial application, named “applied proteomics”. It is based on a novel bioalgorithm, which is able to identify proteins with potential industrial applications. From hundreds of proteins described in the proteome of N. gaditana, the bioalgorithm identified over 400 proteins with potential uses; one of them was selected as UCA01, “in vitro” and its potential was demonstrated against cancer. This approach has great potential, but the applications are potentially numerous and undefined.  相似文献   

9.
Tear fluid forms the outermost layer of the ocular surface and its characteristics and composition have been connected to various ocular surface diseases. As tear proteomics enables the non-invasive investigation of protein levels in the tear fluid, it has become an increasingly popular approach in ocular surface and systemic disease studies. Glaucoma, which is a set of multifactorial diseases affecting mainly the optic nerve and retinal ganglion cells, has also been studied using tear proteomics. In this condition, the complete set of pathophysiological changes occurring in the eye is not yet fully understood, and biomarkers for early diagnosis and accurate treatment selection are needed. More in-depth analyses of glaucoma tear proteomics have started to emerge only more recently with the implementation of LC-MS/MS and other modern technologies. The aim of this review was to examine the published data of the tear protein changes occurring during glaucoma, its topical treatment, and surgical interventions.  相似文献   

10.
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.  相似文献   

11.
12.
Bioaerosols and occupational lung disease   总被引:12,自引:0,他引:12  
Bioaerosols are formed by suspension of particles of biological origin in the air. They come from a wide range of sources, many of which are associated with particular occupations. Many of the components have been implicated in occupational lung disease. The agents include viruses: bacteria; actinomycete, fungal, moss and fern spores; algal and plant cells; insects and mites and their fragments and excreta; proteins from plant and animal sources; enzymes, antibiotics and other products from biotechnological processes; endotoxins from Gram-negative bacteria: and mycotoxins and glucans from fungi. Infections from pathogenic viruses, bacteria and fungi may occur in some work environments but more often the symptoms encountered are of mucous membrane irritation, bronchitis and obstructive pulmonary disease, allergic rhinitis and asthma, allergic alveolitis (granulomatous pneumonitis) or organic dust toxic syndrome (inhalation fever or toxic pneumonitis). Exposure to bioaerosols may occur in many different occupations, especially those in which stored products are handled or where aerosols are created as a result of leaks from equipment intentionally or accidentally contaminated with microorganisms or during particular operations as, for instance, in laboratories and during post-mortem or surgical procedures. This article reviews the spectrum of agents involved in occupational lung disease, the work environments in which they occur, the characteristics of the diseases and their prevention.  相似文献   

13.
Demand for propene as a petrochemical building block keeps growing, while its availability has been decreased by the adoption of shale gas resources, among others. Efforts to optimize its production by conventional means (including modified fluid catalytic cracking) and new on-purpose production technologies (including ethene to propene (ETP) and olefin cracking) are being pursued. This work reviews the progress made on olefin conversion processes, including the ETP reaction, which is still under development, and the cracking of butenes and higher olefins (C5–C8). The factors analyzed include the catalytic performance of different zeolite materials and their modifications to increase catalyst stability, yield, and selectivity to propene, as well as the effect of operating conditions, reaction thermodynamics, and mechanisms involved. The work is complemented by a survey of commercial technologies and developments on olefin conversion processes.  相似文献   

14.
15.
Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival.  相似文献   

16.
The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011–2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism’s condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.  相似文献   

17.
The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F1FO-ATP synthase. These findings were further validated by immunohistology. At later stages of the disease process, the right kidneys revealed an increased frequency of focal segmental glomerulosclerosis lesions, interstitial fibrosis and tubular atrophy. Our findings revealed proteome changes in LBW rat kidneys and revealed a strong downregulation of specific mitochondrial respiratory chain proteins, such as UQCR7.  相似文献   

18.
The sequence-structure-function paradigm of proteins has been changed by the occurrence of intrinsically disordered proteins (IDPs). Benefiting from the structural disorder, IDPs are of particular importance in biological processes like regulation and signaling. IDPs are associated with human diseases, including cancer, cardiovascular disease, neurodegenerative diseases, amyloidoses, and several other maladies. IDPs attract a high level of interest and a substantial effort has been made to develop experimental and computational methods. So far, more than 70 prediction tools have been developed since 1997, within which 17 predictors were created in the last five years. Here, we presented an overview of IDPs predictors developed during 2010–2014. We analyzed the algorithms used for IDPs prediction by these tools and we also discussed the basic concept of various prediction methods for IDPs. The comparison of prediction performance among these tools is discussed as well.  相似文献   

19.
20.
Mass spectrometry is a valuable tool in structural and functional viral proteomics, where it has been used to identify viral capsid proteins, viral mutants, and posttranslational modifications. Further, mass-based approaches combined with time-resolved proteolysis (mass mapping) have revealed the dynamic nature of viral particles in solution; this method is contributing to an understanding of the dynamic domains of the viral capsid which may have significant value in developing new approaches for viral inactivation. As a result of these experiments, and by comparison with complementary data from X-ray crystallography, a new dimension to viral protein structure and function is emerging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号